Suppr超能文献

基于与临床样本中逆转录聚合酶链反应(RT-PCR)的一致性对微阵列预处理算法进行评估。

Evaluation of microarray preprocessing algorithms based on concordance with RT-PCR in clinical samples.

作者信息

Gyorffy Balazs, Molnar Bela, Lage Hermann, Szallasi Zoltan, Eklund Aron C

机构信息

Hungarian Academy of Sciences and Semmelweis University Budapest, Budapest, Hungary.

出版信息

PLoS One. 2009 May 21;4(5):e5645. doi: 10.1371/journal.pone.0005645.

Abstract

BACKGROUND

Several preprocessing algorithms for Affymetrix gene expression microarrays have been developed, and their performance on spike-in data sets has been evaluated previously. However, a comprehensive comparison of preprocessing algorithms on samples taken under research conditions has not been performed.

METHODOLOGY/PRINCIPAL FINDINGS: We used TaqMan RT-PCR arrays as a reference to evaluate the accuracy of expression values from Affymetrix microarrays in two experimental data sets: one comprising 84 genes in 36 colon biopsies, and the other comprising 75 genes in 29 cancer cell lines. We evaluated consistency using the Pearson correlation between measurements obtained on the two platforms. Also, we introduce the log-ratio discrepancy as a more relevant measure of discordance between gene expression platforms. Of nine preprocessing algorithms tested, PLIER+16 produced expression values that were most consistent with RT-PCR measurements, although the difference in performance between most of the algorithms was not statistically significant.

CONCLUSIONS/SIGNIFICANCE: Our results support the choice of PLIER+16 for the preprocessing of clinical Affymetrix microarray data. However, other algorithms performed similarly and are probably also good choices.

摘要

背景

已经开发了几种用于Affymetrix基因表达微阵列的预处理算法,并且之前已经评估了它们在掺入数据集中的性能。然而,尚未对在研究条件下采集的样本上的预处理算法进行全面比较。

方法/主要发现:我们使用TaqMan RT-PCR阵列作为参考,以评估Affymetrix微阵列在两个实验数据集中表达值的准确性:一个数据集包含36份结肠活检样本中的84个基因,另一个数据集包含29个癌细胞系中的75个基因。我们使用两个平台上获得的测量值之间的Pearson相关性来评估一致性。此外,我们引入对数比率差异作为基因表达平台之间不一致性的更相关度量。在所测试的九种预处理算法中,PLIER + 16产生的表达值与RT-PCR测量结果最一致,尽管大多数算法之间的性能差异没有统计学意义。

结论/意义:我们的结果支持选择PLIER + 16对临床Affymetrix微阵列数据进行预处理。然而,其他算法表现相似,可能也是不错的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3570/2680989/0b44d795aed1/pone.0005645.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验