Johnson Kathryn M, Swenson Lara, Opipari Anthony W, Reuter Rolf, Zarrabi Nawid, Fierke Carol A, Börsch Michael, Glick Gary D
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
Biopolymers. 2009 Oct;91(10):830-40. doi: 10.1002/bip.21262.
The mitochondrial F(1)F(o)-ATPase performs the terminal step of oxidative phosphorylation. Small molecules that modulate this enzyme have been invaluable in helping decipher F(1)F(o)-ATPase structure, function, and mechanism. Aurovertin is an antibiotic that binds to the beta subunits in the F(1) domain and inhibits F(1)F(o)-ATPase-catalyzed ATP synthesis in preference to ATP hydrolysis. Despite extensive study and the existence of crystallographic data, the molecular basis of the differential inhibition and kinetic mechanism of inhibition of ATP synthesis by aurovertin has not been resolved. To address these questions, we conducted a series of experiments in both bovine heart mitochondria and E. coli membrane F(1)F(o)-ATPase. Aurovertin is a mixed, noncompetitive inhibitor of both ATP hydrolysis and synthesis with lower K(i) values for synthesis. At low substrate concentrations, inhibition is cooperative suggesting a stoichiometry of two aurovertin per F(1)F(o)-ATPase. Furthermore, aurovertin does not completely inhibit the ATP hydrolytic activity at saturating concentrations. Single-molecule experiments provide evidence that the residual rate of ATP hydrolysis seen in the presence of saturating concentrations of aurovertin results from a decrease in the binding change mechanism by hindering catalytic site interactions. The results from these studies should further the understanding of how the F(1)F(o)-ATPase catalyzes ATP synthesis and hydrolysis.
线粒体F(1)F(o)-ATP合酶执行氧化磷酸化的最后一步。调节这种酶的小分子对于帮助解读F(1)F(o)-ATP合酶的结构、功能和机制非常重要。金轮菌素是一种抗生素,它与F(1)结构域中的β亚基结合,优先抑制F(1)F(o)-ATP合酶催化的ATP合成,而非ATP水解。尽管进行了广泛研究且存在晶体学数据,但金轮菌素对ATP合成的差异抑制和抑制动力学机制的分子基础尚未得到解决。为了解决这些问题,我们在牛心线粒体和大肠杆菌膜F(1)F(o)-ATP合酶中进行了一系列实验。金轮菌素是ATP水解和合成的混合非竞争性抑制剂,对合成的K(i)值较低。在低底物浓度下,抑制是协同的,表明每个F(1)F(o)-ATP合酶有两个金轮菌素的化学计量。此外,在饱和浓度下,金轮菌素不会完全抑制ATP水解活性。单分子实验提供了证据,即在饱和浓度的金轮菌素存在下观察到的ATP水解残留速率是由于阻碍催化位点相互作用导致结合变化机制的降低。这些研究结果应有助于进一步理解F(1)F(o)-ATP合酶如何催化ATP合成和水解。