Vrijheid M, Mann S, Vecchia P, Wiart J, Taki M, Ardoino L, Armstrong B K, Auvinen A, Bédard D, Berg-Beckhoff G, Brown J, Chetrit A, Collatz-Christensen H, Combalot E, Cook A, Deltour I, Feychting M, Giles G G, Hepworth S J, Hours M, Iavarone I, Johansen C, Krewski D, Kurttio P, Lagorio S, Lönn S, McBride M, Montestrucq L, Parslow R C, Sadetzki S, Schüz J, Tynes T, Woodward A, Cardis E
International Agency for Research on Cancer (IARC), Lyon, France.
Occup Environ Med. 2009 Oct;66(10):664-71. doi: 10.1136/oem.2008.043380. Epub 2009 May 21.
The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemiological studies, we assessed determinants of mobile phone output power in a multinational study.
More than 500 volunteers in 12 countries used Global System for Mobile communications software-modified phones (GSM SMPs) for approximately 1 month each. The SMPs recorded date, time, and duration of each call, and the frequency band and output power at fixed sampling intervals throughout each call. Questionnaires provided information on the typical circumstances of an individual's phone use. Linear regression models were used to analyse the influence of possible explanatory variables on the average output power and the percentage call time at maximum power for each call.
Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators. Maximum power was used during a considerable proportion of call time (39% on average). Output power decreased with increasing call duration, but showed little variation in relation to reported frequency of use while in a moving vehicle or inside buildings. Higher output powers for rural compared with urban use of the SMP were observed principally in Sweden where the study covered very sparsely populated areas.
Average power levels are substantially higher than the minimum levels theoretically achievable in GSM networks. Exposure indices could be improved by accounting for average power levels of different telecommunications systems. There appears to be little value in gathering information on circumstances of phone use other than use in very sparsely populated regions.
手机的输出功率与其射频(RF)电磁场强度直接相关,并且由于功率控制技术,理论上在不同网络和手机使用环境中可能会有很大差异。为了改善流行病学研究中的射频暴露指标,我们在一项跨国研究中评估了手机输出功率的决定因素。
12个国家的500多名志愿者每人使用全球移动通信系统软件修改手机(GSM SMP)约1个月。SMP记录每次通话的日期、时间和时长,以及每次通话期间固定采样间隔的频段和输出功率。问卷提供了个人手机使用的典型环境信息。使用线性回归模型分析可能的解释变量对每次通话的平均输出功率和最大功率下通话时间百分比的影响。
对超过60000次通话的测量表明,平均输出功率约为最大值的50%,并且输出功率在研究中心和网络运营商之间相差高达2至3倍。在相当比例的通话时间(平均39%)内使用了最大功率。输出功率随着通话时长增加而降低,但在移动车辆或建筑物内使用时,与报告的使用频率关系不大。与城市使用SMP相比,农村使用时输出功率更高,主要在瑞典观察到,那里的研究覆盖了人口非常稀少的地区。
平均功率水平远高于GSM网络理论上可实现的最低水平。通过考虑不同电信系统的平均功率水平,可以改善暴露指标。除了在人口非常稀少的地区使用外,收集手机使用环境信息似乎没有什么价值。