Suppr超能文献

通过苏云金芽孢杆菌以色列亚种Cry10Aa毒素的过表达形成伴胞晶体,以及Cry10Aa与Cyt1Aa的协同作用。

Parasporal body formation via overexpression of the Cry10Aa toxin of Bacillus thuringiensis subsp. israelensis, and Cry10Aa-Cyt1Aa synergism.

作者信息

Hernández-Soto Alejandro, Del Rincón-Castro M Cristina, Espinoza Ana M, Ibarra Jorge E

机构信息

Centro de Investigación en Biología Celular y Molecular, Ciudad de la Investigación, Universidad de Costa Rica, San José, Costa Rica.

出版信息

Appl Environ Microbiol. 2009 Jul;75(14):4661-7. doi: 10.1128/AEM.00409-09. Epub 2009 May 22.

Abstract

Bacillus thuringiensis subsp. israelensis is the most widely used microbial control agent against mosquitoes and blackflies. Its insecticidal success is based on an arsenal of toxins, such as Cry4A, Cry4B, Cry11A, and Cyt1A, harbored in the parasporal crystal of the bacterium. A fifth toxin, Cry10Aa, is synthesized at very low levels; previous attempts to clone and express Cry10Aa were limited, and no parasporal body was formed. By using a new strategy, the whole Cry10A operon was cloned in the pSTAB vector, where both open reading frames ORF1 and ORF2 (and the gap between the two) were located, under the control of the cyt1A operon and the STAB-SD stabilizer sequence characteristic of this vector. Once the acrystalliferous mutant 4Q7 of B. thuringiensis subsp. israelensis was transformed with this construct, parasporal bodies were observed by phase-contrast microscopy and transmission electron microscopy. Discrete, ca. 0.9-microm amorphous parasporal bodies were observed in the mature sporangia, which were readily purified by gradient centrifugation once autolysis had occurred. Pure parasporal bodies showed two major bands of ca. 68 and 56 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. These bands were further characterized by N-terminal sequencing of tryptic fragments using matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, which identified both bands as the products of ORF1 and ORF2, respectively. Bioassays against fourth-instar larvae of Aedes aegypti of spore-crystal complex and pure crystals of Cry10Aa gave estimated 50% lethal concentrations of 2,061 ng/ml and 239 ng/ml, respectively. Additionally, synergism was clearly detected between Cry10A and Cyt1A, as the synergistic levels (potentiation rates) were estimated at 13.3 for the mixture of Cyt1A crystals and Cry10Aa spore-crystal complex and 12.6 for the combination of Cyt1A and Cry10Aa pure crystals.

摘要

苏云金芽孢杆菌以色列亚种是防治蚊子和蚋最广泛使用的微生物制剂。其杀虫成功基于一系列毒素,如存在于该细菌伴孢晶体中的Cry4A、Cry4B、Cry11A和Cyt1A。第五种毒素Cry10Aa的合成水平非常低;之前克隆和表达Cry10Aa的尝试有限,且未形成伴孢体。通过使用一种新策略,整个Cry10A操纵子被克隆到pSTAB载体中,该载体中开放阅读框ORF1和ORF2(以及两者之间的间隔)位于cyt1A操纵子和该载体特有的STAB-SD稳定序列的控制之下。一旦用该构建体转化苏云金芽孢杆菌以色列亚种的无晶体突变体4Q7,通过相差显微镜和透射电子显微镜观察到了伴孢体。在成熟的孢子囊中观察到离散的、约0.9微米的无定形伴孢体,一旦发生自溶,通过梯度离心很容易将其纯化。纯伴孢体在十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分析中显示出两条主要条带,约为68 kDa和56 kDa。使用基质辅助激光解吸电离-飞行时间质谱分析对胰蛋白酶片段进行N端测序,进一步对这些条带进行了表征,确定这两条带分别为ORF1和ORF2的产物。对埃及伊蚊四龄幼虫进行的芽孢-晶体复合物和Cry10Aa纯晶体的生物测定得出,估计50%致死浓度分别为2061 ng/ml和239 ng/ml。此外,在Cry10A和Cyt1A之间明显检测到协同作用,因为Cyt1A晶体与Cry10Aa芽孢-晶体复合物的混合物的协同水平(增强率)估计为13.3,Cyt1A与Cry10Aa纯晶体组合的协同水平估计为12.6。

相似文献

引用本文的文献

2
Multifunctional Properties of a Strain (BST-122): Beyond the Parasporal Crystal.
Toxins (Basel). 2022 Nov 7;14(11):768. doi: 10.3390/toxins14110768.
3
Identification and characterization of a new cry-like gene found in a Bacillus cereus strain.
Antonie Van Leeuwenhoek. 2021 Nov;114(11):1759-1770. doi: 10.1007/s10482-021-01635-2. Epub 2021 Sep 7.
4
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance.
Toxins (Basel). 2021 Jul 27;13(8):523. doi: 10.3390/toxins13080523.
5
A novel anti-dipteran strain: Unusual Cry toxin genes in a highly dynamic plasmid environment.
Appl Environ Microbiol. 2021 Mar 1;87(5). doi: 10.1128/AEM.02294-20. Epub 2020 Dec 11.
8
Search for Cry proteins expressed by spp. genomes, using hidden Markov model profiles.
3 Biotech. 2019 Jan;9(1):13. doi: 10.1007/s13205-018-1533-3. Epub 2019 Jan 2.
9
Using phage display technology to obtain Crybodies active against non-target insects.
Sci Rep. 2017 Nov 2;7(1):14922. doi: 10.1038/s41598-017-09384-x.

本文引用的文献

2
Molecular structures of fructans from Agave tequilana Weber var. azul.
J Agric Food Chem. 2003 Dec 31;51(27):7835-40. doi: 10.1021/jf030383v.
3
Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria.
Annu Rev Genet. 2003;37:409-33. doi: 10.1146/annurev.genet.37.110801.143042.
5
Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species.
Appl Environ Microbiol. 2003 Sep;69(9):5269-74. doi: 10.1128/AEM.69.9.5269-5274.2003.
6
PCR-based identification of Bacillus thuringiensis pesticidal crystal genes.
FEMS Microbiol Rev. 2003 Jan;26(5):419-32. doi: 10.1111/j.1574-6976.2003.tb00624.x.
7
Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis.
Appl Environ Microbiol. 2002 Oct;68(10):5082-95. doi: 10.1128/AEM.68.10.5082-5095.2002.
8
Protease interactions with bacillus thuringiensis insecticidal toxins.
Arch Insect Biochem Physiol. 1999 Sep;42(1):1-12. doi: 10.1002/(SICI)1520-6327(199909)42:1<1::AID-ARCH2>3.0.CO;2-#.
10
Bacillus thuringiensis and its pesticidal crystal proteins.
Microbiol Mol Biol Rev. 1998 Sep;62(3):775-806. doi: 10.1128/MMBR.62.3.775-806.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验