Charpentier Thomas H, Wilder Paul T, Liriano Melissa A, Varney Kristen M, Zhong Shijun, Coop Andrew, Pozharski Edwin, MacKerell Alexander D, Toth Eric A, Weber David J
Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, 108 North Greene Street, Baltimore, Maryland 21201, USA.
Biochemistry. 2009 Jul 7;48(26):6202-12. doi: 10.1021/bi9005754.
Structural studies are part of a rational drug design program aimed at inhibiting the S100B-p53 interaction and restoring wild-type p53 function in malignant melanoma. To this end, structures of three compounds (SBi132, SBi1279, and SBi523) bound to Ca(2+)-S100B were determined by X-ray crystallography at 2.10 A (R(free) = 0.257), 1.98 A (R(free) = 0.281), and 1.90 A (R(free) = 0.228) resolution, respectively. Upon comparison, SBi132, SBi279, and SBi523 were found to bind in distinct locations and orientations within the hydrophobic target binding pocket of Ca(2+)-S100B with minimal structural changes observed for the protein upon complex formation with each compound. Specifically, SBi132 binds nearby residues in loop 2 (His-42, Phe-43, and Leu-44) and helix 4 (Phe-76, Met-79, Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88), whereas SBi523 interacts with a separate site defined by residues within loop 2 (Ser-41, His-42, Phe-43, Leu-44, Glu-45, and Glu-46) and one residue on helix 4 (Phe-87). The SBi279 binding site on Ca(2+)-S100B overlaps the SBi132 and SBi523 sites and contacts residues in both loop 2 (Ser-41, His-42, Phe-43, Leu-44, and Glu-45) and helix 4 (Ile-80, Ala-83, Cys-84, Phe-87, and Phe-88). NMR data, including saturation transfer difference (STD) and (15)N backbone and (13)C side chain chemical shift perturbations, were consistent with the X-ray crystal structures and demonstrated the relevance of all three small molecule-S100B complexes in solution. The discovery that SBi132, SBi279, and SBi523 bind to proximal sites on Ca(2+)-S100B could be useful for the development of a new class of molecule(s) that interacts with one or more of these binding sites simultaneously, thereby yielding novel tight binding inhibitors specific for blocking protein-protein interactions involving S100B.
结构研究是合理药物设计计划的一部分,旨在抑制S100B与p53的相互作用,并在恶性黑色素瘤中恢复野生型p53功能。为此,通过X射线晶体学分别在2.10 Å(R(free)= 0.257)、1.98 Å(R(free)= 0.281)和1.90 Å(R(free)= 0.228)分辨率下测定了与Ca(2+)-S100B结合的三种化合物(SBi132、SBi1279和SBi523)的结构。经比较发现,SBi132、SBi279和SBi523在Ca(2+)-S100B的疏水靶标结合口袋内以不同的位置和方向结合,在每种化合物与蛋白质形成复合物时,观察到蛋白质的结构变化最小。具体而言,SBi132结合在环2(His-42、Phe-43和Leu-44)和螺旋4(Phe-76、Met-79、Ile-80、Ala-83、Cys-84、Phe-87和Phe-88)附近的残基,而SBi523与由环2(Ser-41、His-42、Phe-43、Leu-44、Glu-45和Glu-46)内的残基以及螺旋4上的一个残基(Phe-87)定义的另一个位点相互作用。Ca(2+)-S100B上的SBi279结合位点与SBi132和SBi523位点重叠,并与环2(Ser-41、His-42、Phe-43、Leu-44和Glu-45)和螺旋4(Ile-80、Ala-83、Cys-84、Phe-87和Phe-88)中的残基接触。包括饱和转移差异(STD)以及(15)N主链和(13)C侧链化学位移扰动在内的核磁共振数据与X射线晶体结构一致,并证明了所有三种小分子-S100B复合物在溶液中的相关性。SBi132、SBi279和SBi523与Ca(2+)-S100B上的近端位点结合这一发现,可能有助于开发一类新的分子,这类分子可同时与这些结合位点中的一个或多个相互作用,从而产生特异性阻断涉及S100B的蛋白质-蛋白质相互作用的新型紧密结合抑制剂。