Chen Haiyan, Armand Michel, Courty Matthieu, Jiang Meng, Grey Clare P, Dolhem Franck, Tarascon Jean-Marie, Poizot Philippe
Laboratoire de Réactivité et Chimie des Solides-UMR CNRS 6007, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France.
J Am Chem Soc. 2009 Jul 1;131(25):8984-8. doi: 10.1021/ja9024897.
The use of lithiated redox organic molecules containing electrochemically active C=O functionalities, such as lithiated oxocarbon salts, is proposed. These represent alternative electrode materials to those used in current Li-ion battery technology that can be synthesized from renewable starting materials. The key material is the tetralithium salt of tetrahydroxybenzoquinone (Li(4)C(6)O(6)), which can be both reduced to Li(2)C(6)O(6) and oxidized to Li(6)C(6)O(6). In addition to being directly synthesized from tetrahydroxybenzoquinone by neutralization at room temperature, we demonstrate that this salt can readily be formed by the thermal disproportionation of Li(2)C(6)O(6) (dilithium rhodizonate phase) under an inert atmosphere. The Li(4)C(6)O(6) compound shows good electrochemical performance vs Li with a sustained reversibility of approximately 200 mAh g(-1) at an average potential of 1.8 V, allowing a Li-ion battery that cycles between Li(2)C(6)O(6) and Li(6)C(6)O(6) to be constructed.
有人提出使用含有电化学活性C=O官能团的锂化氧化还原有机分子,如锂化含氧碳盐。这些是当前锂离子电池技术中所用电极材料的替代材料,可由可再生原料合成。关键材料是四羟基苯醌的四锂盐(Li(4)C(6)O(6)),它既能被还原为Li(2)C(6)O(6),也能被氧化为Li(6)C(6)O(6)。除了在室温下通过中和反应由四羟基苯醌直接合成外,我们还证明这种盐可以在惰性气氛下通过Li(2)C(6)O(6)(二锂连苯三酚酸相)的热歧化反应轻松形成。Li(4)C(6)O(6)化合物相对于锂表现出良好的电化学性能,在1.8 V的平均电位下具有约200 mAh g(-1)的持续可逆性,从而可以构建在Li(2)C(6)O(6)和Li(6)C(6)O(6)之间循环的锂离子电池。