Suppr超能文献

一种用于能量存储的常见纹身化学品:来自指甲花植物的萘醌二聚体作为锂离子电池的绿色可持续阴极材料。

A common tattoo chemical for energy storage: henna plant-derived naphthoquinone dimer as a green and sustainable cathode material for Li-ion batteries.

作者信息

Miroshnikov Mikhail, Kato Keiko, Babu Ganguli, Divya Kizhmuri P, Reddy Arava Leela Mohana, Ajayan Pulickel M, John George

机构信息

Department of Chemistry, Center for Discovery and Innovation, The City College of New York 85 St. Nicholas Terrace New York NY 10031 USA

PhD Program in Chemistry, The Graduate Center of the City University of New York 365 5th Ave New York NY 10016 USA.

出版信息

RSC Adv. 2018 Jan 4;8(3):1576-1582. doi: 10.1039/c7ra12357d. eCollection 2018 Jan 2.

Abstract

The burgeoning energy demands of an increasingly eco-conscious population have spurred the need for sustainable energy storage devices, and have called into question the viability of the popular lithium ion battery. A series of natural polyaromatic compounds have previously displayed the capability to bind lithium polar oxygen-containing functional groups that act as redox centers in potential electrodes. Lawsone, a widely renowned dye molecule extracted from the henna leaf, can be dimerized to bislawsone to yield up to six carbonyl/hydroxyl groups for potential lithium coordination. The facile one-step dimerization and subsequent chemical lithiation of bislawsone minimizes synthetic steps and toxic reagents compared to existing systems. We therefore report lithiated bislawsone as a candidate to advance non-toxic and recyclable green battery materials. Bislawsone based electrodes displayed a specific capacity of up to 130 mA h g at 20 mA g currents, and voltage plateaus at 2.1-2.5 V, which are comparable to modern Li-ion battery cathodes.

摘要

日益注重环保的人群对能源的需求不断增长,这促使人们需要可持续的能量存储设备,同时也引发了对流行的锂离子电池可行性的质疑。此前,一系列天然多环芳烃化合物已显示出能够结合锂的能力,其含极性氧的官能团可在潜在电极中充当氧化还原中心。散沫花素是一种从指甲花叶中提取的广为人知的染料分子,它可以二聚化为双散沫花素,从而产生多达六个羰基/羟基用于潜在的锂配位。与现有体系相比,双散沫花素简便的一步二聚化及随后的化学锂化过程减少了合成步骤和有毒试剂的使用。因此,我们报道锂化双散沫花素可作为推进无毒且可回收绿色电池材料的候选物。基于双散沫花素的电极在20 mA g的电流下显示出高达130 mA h g的比容量,以及在2.1 - 2.5 V的电压平台,这与现代锂离子电池的阴极相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b79c/9077053/1c88e2c3f364/c7ra12357d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验