Suppr超能文献

使用γ-(18)O(4)-ATP焦磷酸交换对腺苷化酶进行表征。

Adenylation enzyme characterization using gamma -(18)O(4)-ATP pyrophosphate exchange.

作者信息

Phelan Vanessa V, Du Yu, McLean John A, Bachmann Brian O

机构信息

Department of Chemistry, Vanderbilt University, Nashville, TN 37204, USA.

出版信息

Chem Biol. 2009 May 29;16(5):473-8. doi: 10.1016/j.chembiol.2009.04.007.

Abstract

We present here a rapid, highly sensitive nonradioactive assay for adenylation enzyme selectivity determination and characterization. This method measures the isotopic back exchange of unlabeled pyrophosphate into gamma-(18)O(4)-labeled ATP via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS), electrospray ionization liquid chromatography MS, or electrospray ionization liquid chromatography-tandem MS and is demonstrated for both nonribosomal (TycA, ValA) and ribosomal synthetases (TrpRS, LysRS) of known specificity. This low-volume (6 microl) method detects as little as 0.01% (600 fmol) exchange, comparable in sensitivity to previously reported radioactive assays and readily adaptable to kinetics measurements and high throughput analysis of a wide spectrum of synthetases. Finally, a previously uncharacterized A-T didomain from anthramycin biosynthesis in the thermophile S. refuinius was demonstrated to selectively activate 4-methyl-3-hydroxyanthranilic acid at 47 degrees C, providing biochemical evidence for a new aromatic beta-amino acid activating adenylation domain and the first functional analysis of the anthramycin biosynthetic gene cluster.

摘要

我们在此展示一种用于腺苷化酶选择性测定和表征的快速、高灵敏度非放射性检测方法。该方法通过基质辅助激光解吸/电离飞行时间质谱(MS)、电喷雾电离液相色谱 MS 或电喷雾电离液相色谱 - 串联 MS 来测量未标记焦磷酸向 γ-(18)O(4)-标记 ATP 的同位素反向交换,并已针对已知特异性的非核糖体(TycA、ValA)和核糖体合成酶(TrpRS、LysRS)进行了验证。这种低体积(6 微升)方法可检测低至 0.01%(600 飞摩尔)的交换,灵敏度与先前报道的放射性检测方法相当,并且易于适用于动力学测量以及对多种合成酶的高通量分析。最后,嗜热菌 S. refuinius 中炭疽霉素生物合成的一个先前未表征的 A - T 双结构域被证明在 47 摄氏度下可选择性激活 4 - 甲基 - 3 - 羟基邻氨基苯甲酸,为一种新的芳香族β - 氨基酸激活腺苷化结构域提供了生化证据,并对炭疽霉素生物合成基因簇进行了首次功能分析。

相似文献

1
Adenylation enzyme characterization using gamma -(18)O(4)-ATP pyrophosphate exchange.
Chem Biol. 2009 May 29;16(5):473-8. doi: 10.1016/j.chembiol.2009.04.007.
2
Colorimetric Detection of the Adenylation Activity in Nonribosomal Peptide Synthetases.
Methods Mol Biol. 2016;1401:77-84. doi: 10.1007/978-1-4939-3375-4_5.
3
Online Pyrophosphate Assay for Analyzing Adenylation Domains of Nonribosomal Peptide Synthetases.
Chembiochem. 2016 Apr 1;17(7):576-84. doi: 10.1002/cbic.201500555. Epub 2016 Feb 23.
7
Mapping the limits of substrate specificity of the adenylation domain of TycA.
Chembiochem. 2009 Mar 2;10(4):671-82. doi: 10.1002/cbic.200800553.
9
Adenylation Domains in Nonribosomal Peptide Engineering.
Chembiochem. 2019 Jun 3;20(11):1347-1356. doi: 10.1002/cbic.201800750. Epub 2019 Mar 13.
10
Kinetic characterization of amino acid activation by aminoacyl-tRNA synthetases using radiolabelled γ-[P]ATP.
FEBS Open Bio. 2025 Apr;15(4):580-586. doi: 10.1002/2211-5463.13903. Epub 2024 Sep 30.

引用本文的文献

1
Biosynthesis of the corallorazines, a widespread class of antibiotic cyclic lipodipeptides.
RSC Chem Biol. 2024 Aug 16;5(10):970-80. doi: 10.1039/d4cb00157e.
2
Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of O-Phosphoramidites.
Angew Chem Weinheim Bergstr Ger. 2022 Jan 26;134(5):e202112457. doi: 10.1002/ange.202112457. Epub 2021 Nov 23.
4
Advances in the adenylation domain: discovery of diverse non-ribosomal peptides.
Appl Microbiol Biotechnol. 2023 Jul;107(13):4187-4197. doi: 10.1007/s00253-023-12585-2. Epub 2023 May 26.
5
Bioinformatic Analysis Reveals both Oversampled and Underexplored Biosynthetic Diversity in Nonribosomal Peptides.
ACS Chem Biol. 2023 Mar 17;18(3):476-483. doi: 10.1021/acschembio.2c00761. Epub 2023 Feb 23.
6
Colorimetric Determination of Adenylation Domain Activity in Nonribosomal Peptide Synthetases by Using Chrome Azurol S.
Chembiochem. 2023 Mar 1;24(5):e202200668. doi: 10.1002/cbic.202200668. Epub 2023 Jan 26.
7
A Specialized Dehydrogenase Provides l-Phenyllactate for FR900359 Biosynthesis.
Chembiochem. 2022 May 18;23(10):e202100569. doi: 10.1002/cbic.202100569. Epub 2021 Dec 9.
8
Stable Isotope Phosphate Labelling of Diverse Metabolites is Enabled by a Family of O-Phosphoramidites.
Angew Chem Int Ed Engl. 2022 Jan 26;61(5):e202112457. doi: 10.1002/anie.202112457. Epub 2021 Nov 23.
9
Biosynthesis and Mechanism of Action of the Cell Wall Targeting Antibiotic Hypeptin.
Angew Chem Int Ed Engl. 2021 Jun 7;60(24):13579-13586. doi: 10.1002/anie.202102224. Epub 2021 May 7.
10

本文引用的文献

3
Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases.
Methods. 2008 Feb;44(2):100-18. doi: 10.1016/j.ymeth.2007.09.007.
4
MALDI imaging mass spectrometry: molecular snapshots of biochemical systems.
Nat Methods. 2007 Oct;4(10):828-33. doi: 10.1038/nmeth1094.
6
Profiling and imaging of tissues by imaging ion mobility-mass spectrometry.
J Mass Spectrom. 2007 Aug;42(8):1099-105. doi: 10.1002/jms.1254.
7
Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes.
Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):11951-6. doi: 10.1073/pnas.0705348104. Epub 2007 Jul 9.
8
Benzodiazepine biosynthesis in Streptomyces refuineus.
Chem Biol. 2007 Jun;14(6):691-701. doi: 10.1016/j.chembiol.2007.05.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验