Richardson Anthony R, Soliven Khanh C, Castor Margaret E, Barnes Penelope D, Libby Stephen J, Fang Ferric C
Department of Laboratory Medicine, University of Washington, Seattle, WA, USA.
PLoS Pathog. 2009 May;5(5):e1000451. doi: 10.1371/journal.ppat.1000451. Epub 2009 May 29.
Intracellular pathogens must withstand nitric oxide (NO.) generated by host phagocytes. Salmonella enterica serovar Typhimurium interferes with intracellular trafficking of inducible nitric oxide synthase (iNOS) and possesses multiple systems to detoxify NO.. Consequently, the level of NO. stress encountered by S. Typhimurium during infection in vivo has been unknown. The Base Excision Repair (BER) system recognizes and repairs damaged DNA bases including cytosine and guanine residues modified by reactive nitrogen species. Apurinic/apyrimidinic (AP) sites generated by BER glycosylases require subsequent processing by AP endonucleases. S. Typhimurium xth nfo mutants lacking AP endonuclease activity exhibit increased NO. sensitivity resulting from chromosomal fragmentation at unprocessed AP sites. BER mutant strains were thus used to probe the nature and extent of nitrosative damage sustained by intracellular bacteria during infection. Here we show that an xth nfo S. Typhimurium mutant is attenuated for virulence in C3H/HeN mice, and virulence can be completely restored by the iNOS inhibitor L-NIL. Inactivation of the ung or fpg glycosylase genes partially restores virulence to xth nfo mutant S. Typhimurium, demonstrating that NO. fluxes in vivo are sufficient to modify cytosine and guanine bases, respectively. Mutants lacking ung or fpg exhibit NO.-dependent hypermutability during infection, underscoring the importance of BER in protecting Salmonella from the genotoxic effects of host NO.. These observations demonstrate that host-derived NO. damages Salmonella DNA in vivo, and the BER system is required to maintain bacterial genomic integrity.
细胞内病原体必须抵御宿主吞噬细胞产生的一氧化氮(NO·)。鼠伤寒沙门氏菌会干扰诱导型一氧化氮合酶(iNOS)的细胞内运输,并拥有多种系统来解毒NO·。因此,鼠伤寒沙门氏菌在体内感染期间所面临的NO·应激水平一直未知。碱基切除修复(BER)系统可识别并修复受损的DNA碱基,包括被活性氮物质修饰的胞嘧啶和鸟嘌呤残基。BER糖基化酶产生的无嘌呤/无嘧啶(AP)位点需要随后由AP核酸内切酶进行处理。缺乏AP核酸内切酶活性的鼠伤寒沙门氏菌xth nfo突变体由于未处理的AP位点处的染色体片段化而表现出对NO·的敏感性增加。因此,BER突变菌株被用于探究细胞内细菌在感染期间所遭受的亚硝化损伤的性质和程度。在此我们表明,xth nfo鼠伤寒沙门氏菌突变体在C3H/HeN小鼠中的毒力减弱,并且毒力可通过iNOS抑制剂L-NIL完全恢复。ung或fpg糖基化酶基因的失活可部分恢复xth nfo突变体鼠伤寒沙门氏菌的毒力,表明体内的NO·通量分别足以修饰胞嘧啶和鸟嘌呤碱基。缺乏ung或fpg的突变体在感染期间表现出NO·依赖性的高突变率,突出了BER在保护沙门氏菌免受宿主NO·的遗传毒性影响方面的重要性。这些观察结果表明,宿主来源的NO·在体内会损伤沙门氏菌的DNA,并且需要BER系统来维持细菌基因组的完整性。