Hinrichs Chris, Singh Vikas, Mukherjee Lopamudra, Xu Guofan, Chung Moo K, Johnson Sterling C
Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
Neuroimage. 2009 Oct 15;48(1):138-49. doi: 10.1016/j.neuroimage.2009.05.056. Epub 2009 May 27.
Structural and functional brain images are playing an important role in helping us understand the changes associated with neurological disorders such as Alzheimer's disease (AD). Recent efforts have now started investigating their utility for diagnosis purposes. This line of research has shown promising results where methods from machine learning (such as Support Vector Machines) have been used to identify AD-related patterns from images, for use in diagnosing new individual subjects. In this paper, we propose a new framework for AD classification which makes use of the Linear Program (LP) boosting with novel additional regularization based on spatial "smoothness" in 3D image coordinate spaces. The algorithm formalizes the expectation that since the examples for training the classifier are images, the voxels eventually selected for specifying the decision boundary must constitute spatially contiguous chunks, i.e., "regions" must be preferred over isolated voxels. This prior belief turns out to be useful for significantly reducing the space of possible classifiers and leads to substantial benefits in generalization. In our method, the requirement of spatial contiguity (of selected discriminating voxels) is incorporated within the optimization framework directly. Other methods have made use of similar biases as a pre- or post-processing step, however, our model incorporates this emphasis on spatial smoothness directly into the learning step. We report on extensive evaluations of our algorithm on MR and FDG-PET images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and discuss the relationship of the classification output with the clinical and cognitive biomarker data available within ADNI.
大脑的结构和功能图像在帮助我们理解与神经退行性疾病(如阿尔茨海默病(AD))相关的变化方面发挥着重要作用。最近的研究已开始探讨其在诊断方面的效用。这一研究方向已取得了有前景的成果,其中机器学习方法(如支持向量机)已被用于从图像中识别与AD相关的模式,以用于诊断新的个体受试者。在本文中,我们提出了一种用于AD分类的新框架,该框架利用线性规划(LP)增强算法,并基于三维图像坐标空间中的空间“平滑性”引入了新颖的额外正则化。该算法形式化了这样一种预期:由于用于训练分类器的示例是图像,最终选择用于指定决策边界的体素必须构成空间上连续的块,即,“区域”应优先于孤立的体素。事实证明,这种先验信念对于显著减少可能的分类器空间很有用,并在泛化方面带来了实质性的好处。在我们的方法中,(所选鉴别体素的)空间连续性要求直接纳入了优化框架。其他方法将类似的偏差用作预处理或后处理步骤,然而,我们的模型将这种对空间平滑性的强调直接纳入了学习步骤。我们报告了对我们的算法在来自阿尔茨海默病神经影像倡议(ADNI)数据集的磁共振成像(MR)和氟代脱氧葡萄糖正电子发射断层显像(FDG-PET)图像上的广泛评估,并讨论了分类输出与ADNI中可用的临床和认知生物标志物数据之间的关系。