Suppr超能文献

用于AD分类的空间增强LPboosting及其在ADNI数据集上的评估

Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset.

作者信息

Hinrichs Chris, Singh Vikas, Mukherjee Lopamudra, Xu Guofan, Chung Moo K, Johnson Sterling C

机构信息

Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Neuroimage. 2009 Oct 15;48(1):138-49. doi: 10.1016/j.neuroimage.2009.05.056. Epub 2009 May 27.

Abstract

Structural and functional brain images are playing an important role in helping us understand the changes associated with neurological disorders such as Alzheimer's disease (AD). Recent efforts have now started investigating their utility for diagnosis purposes. This line of research has shown promising results where methods from machine learning (such as Support Vector Machines) have been used to identify AD-related patterns from images, for use in diagnosing new individual subjects. In this paper, we propose a new framework for AD classification which makes use of the Linear Program (LP) boosting with novel additional regularization based on spatial "smoothness" in 3D image coordinate spaces. The algorithm formalizes the expectation that since the examples for training the classifier are images, the voxels eventually selected for specifying the decision boundary must constitute spatially contiguous chunks, i.e., "regions" must be preferred over isolated voxels. This prior belief turns out to be useful for significantly reducing the space of possible classifiers and leads to substantial benefits in generalization. In our method, the requirement of spatial contiguity (of selected discriminating voxels) is incorporated within the optimization framework directly. Other methods have made use of similar biases as a pre- or post-processing step, however, our model incorporates this emphasis on spatial smoothness directly into the learning step. We report on extensive evaluations of our algorithm on MR and FDG-PET images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and discuss the relationship of the classification output with the clinical and cognitive biomarker data available within ADNI.

摘要

大脑的结构和功能图像在帮助我们理解与神经退行性疾病(如阿尔茨海默病(AD))相关的变化方面发挥着重要作用。最近的研究已开始探讨其在诊断方面的效用。这一研究方向已取得了有前景的成果,其中机器学习方法(如支持向量机)已被用于从图像中识别与AD相关的模式,以用于诊断新的个体受试者。在本文中,我们提出了一种用于AD分类的新框架,该框架利用线性规划(LP)增强算法,并基于三维图像坐标空间中的空间“平滑性”引入了新颖的额外正则化。该算法形式化了这样一种预期:由于用于训练分类器的示例是图像,最终选择用于指定决策边界的体素必须构成空间上连续的块,即,“区域”应优先于孤立的体素。事实证明,这种先验信念对于显著减少可能的分类器空间很有用,并在泛化方面带来了实质性的好处。在我们的方法中,(所选鉴别体素的)空间连续性要求直接纳入了优化框架。其他方法将类似的偏差用作预处理或后处理步骤,然而,我们的模型将这种对空间平滑性的强调直接纳入了学习步骤。我们报告了对我们的算法在来自阿尔茨海默病神经影像倡议(ADNI)数据集的磁共振成像(MR)和氟代脱氧葡萄糖正电子发射断层显像(FDG-PET)图像上的广泛评估,并讨论了分类输出与ADNI中可用的临床和认知生物标志物数据之间的关系。

相似文献

1
Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset.
Neuroimage. 2009 Oct 15;48(1):138-49. doi: 10.1016/j.neuroimage.2009.05.056. Epub 2009 May 27.
2
Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data.
Neuroimage. 2018 Dec;183:504-521. doi: 10.1016/j.neuroimage.2018.08.042. Epub 2018 Aug 18.
5
Classification of Alzheimer's disease from FDG-PET images using favourite class ensembles.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2477-80. doi: 10.1109/EMBC.2013.6610042.
8
Multimodal classification of Alzheimer's disease and mild cognitive impairment.
Neuroimage. 2011 Apr 1;55(3):856-67. doi: 10.1016/j.neuroimage.2011.01.008. Epub 2011 Jan 12.
9
Longitudinal FDG-PET features for the classification of Alzheimer's disease.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1941-4. doi: 10.1109/EMBC.2014.6943992.

引用本文的文献

4
Enhancing Alzheimer's disease diagnosis and staging: a multistage CNN framework using MRI.
Front Psychiatry. 2024 Jun 24;15:1395563. doi: 10.3389/fpsyt.2024.1395563. eCollection 2024.
6
Evaluation of Feature Selection for Alzheimer's Disease Diagnosis.
Front Aging Neurosci. 2022 Jun 24;14:924113. doi: 10.3389/fnagi.2022.924113. eCollection 2022.
7
Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI.
Br J Radiol. 2022 Aug 1;95(1136):20211253. doi: 10.1259/bjr.20211253. Epub 2022 Jun 9.
9
The Role of Medication Data to Enhance the Prediction of Alzheimer's Progression Using Machine Learning.
Comput Intell Neurosci. 2021 Sep 21;2021:8439655. doi: 10.1155/2021/8439655. eCollection 2021.
10
A Real-Time Clinical Decision Support System, for Mild Cognitive Impairment Detection, Based on a Hybrid Neural Architecture.
Comput Math Methods Med. 2021 Jun 21;2021:5545297. doi: 10.1155/2021/5545297. eCollection 2021.

本文引用的文献

2
Cortical surface thickness as a classifier: boosting for autism classification.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):999-1007. doi: 10.1007/978-3-540-85988-8_119.
3
Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI.
Neuroimage. 2008 Jul 15;41(4):1220-7. doi: 10.1016/j.neuroimage.2008.03.050. Epub 2008 Apr 8.
4
Computational anatomical methods as applied to ageing and dementia.
Br J Radiol. 2007 Dec;80 Spec No 2:S78-91. doi: 10.1259/BJR/20005470.
5
Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study.
Neuroimage. 2008 Jun;41(2):277-85. doi: 10.1016/j.neuroimage.2008.02.043. Epub 2008 Mar 6.
6
A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia.
Neuroimage. 2008 Feb 15;39(4):1774-82. doi: 10.1016/j.neuroimage.2007.10.012.
7
MRI-based automated computer classification of probable AD versus normal controls.
IEEE Trans Med Imaging. 2008 Apr;27(4):509-20. doi: 10.1109/TMI.2007.908685.
9
Automatic classification of MR scans in Alzheimer's disease.
Brain. 2008 Mar;131(Pt 3):681-9. doi: 10.1093/brain/awm319. Epub 2008 Jan 17.
10
Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies.
Neuroimage. 2008 Feb 1;39(3):1186-97. doi: 10.1016/j.neuroimage.2007.09.073. Epub 2007 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验