Suppr超能文献

基于迁移学习和神经网络的结构磁共振成像数据方法用于阿尔茨海默病的预测和分类

Transfer Learning and Neural Network-Based Approach on Structural MRI Data for Prediction and Classification of Alzheimer's Disease.

作者信息

Momeni Farideh, Shahbazi-Gahrouei Daryoush, Mahmoudi Tahereh, Mehdizadeh Alireza

机构信息

Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.

Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran.

出版信息

Diagnostics (Basel). 2025 Feb 4;15(3):360. doi: 10.3390/diagnostics15030360.

Abstract

Alzheimer's disease (AD) is a neurodegenerative condition that has no definitive treatment, and its early diagnosis can help to prevent or slow down its progress. Structural magnetic resonance imaging (sMRI) and the progress of artificial intelligence (AI) have significant attention in AD detection. This study aims to differentiate AD from NC and distinguish between LMCI and EMCI from the other two classes. Another goal is the diagnostic performance (accuracy and AUC) of sMRI for predicting AD in its early stages. In this study, 398 participants were used from the ADNI and OASIS global database of sMRI including 98 individuals with AD, 102 with early mild cognitive impairment (EMCI), 98 with late mild cognitive impairment (LMCI), and 100 normal controls (NC). : The proposed model achieved high area under the curve (AUC) values and an accuracy of 99.7%, which is very remarkable for all four classes: NC vs. AD: AUC = [0.985], EMCI vs. NC: AUC = [0.961], LMCI vs. NC: AUC = [0.951], LMCI vs. AD: AUC = [0.989], and EMCI vs. LMCI: AUC = [1.000]. The results reveal that this model incorporates DenseNet169, transfer learning, and class decomposition to classify AD stages, particularly in differentiating EMCI from LMCI. The proposed model performs well with high accuracy and area under the curve for AD diagnostics at early stages. In addition, the accurate diagnosis of EMCI and LMCI can lead to early prediction of AD or prevention and slowing down of AD before its progress.

摘要

阿尔茨海默病(AD)是一种尚无确切治疗方法的神经退行性疾病,其早期诊断有助于预防或减缓病情发展。结构磁共振成像(sMRI)和人工智能(AI)的进展在AD检测中受到了广泛关注。本研究旨在将AD与正常对照(NC)区分开来,并将轻度认知障碍晚期(LMCI)和轻度认知障碍早期(EMCI)与其他两类区分开来。另一个目标是sMRI在AD早期预测中的诊断性能(准确性和曲线下面积)。在本研究中,使用了来自ADNI和OASIS全球sMRI数据库的398名参与者,其中包括98名AD患者、102名轻度认知障碍早期(EMCI)患者、98名轻度认知障碍晚期(LMCI)患者和100名正常对照(NC)。所提出的模型取得了较高的曲线下面积(AUC)值和99.7%的准确率,对于所有四类情况都非常显著:NC与AD:AUC = [0.985],EMCI与NC:AUC = [0.961],LMCI与NC:AUC = [0.951],LMCI与AD:AUC = [0.989],以及EMCI与LMCI:AUC = [1.000]。结果表明,该模型结合了DenseNet169、迁移学习和类别分解来对AD阶段进行分类,特别是在区分EMCI和LMCI方面。所提出的模型在AD早期诊断中具有较高的准确率和曲线下面积,表现良好。此外,对EMCI和LMCI的准确诊断可以导致对AD的早期预测,或在AD病情进展之前进行预防和减缓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd87/11817314/0c01580b5752/diagnostics-15-00360-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验