Choy Jenny Susana, Kassab Ghassan S
Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, Indiana, USA.
Am J Physiol Heart Circ Physiol. 2009 Aug;297(2):H750-8. doi: 10.1152/ajpheart.01136.2008. Epub 2009 May 29.
Since the right and left ventricles (RV and LV) function under different loading conditions, it is not surprising that they differ in their mechanics (intramyocardial pressure), structure, and metabolism; such differences may also contribute to differences in the coronary vessel wall. Our hypothesis is that intima-media thickness (IMT), IMT-to-radius (IMT-to-R) ratio, and vessel wall stress vary transmurally in the LV, much more than in the RV. Five normal Yorkshire swine were used in this study. The major coronary arteries were cannulated through the aorta and perfusion fixed with 6.25% glutaraldehyde and casted with a catalyzed silicone-elastomer solution. Arterial and venous vessels were obtained from different transmural locations of the RV and LV, processed for histological analysis, and measured with an imaging software. A larger transmural gradient was found for IMT, IMT-to-R ratio, and diastolic circumferential stress in vessels from the LV than the nearly zero transmural slope in the RV. The IMT of arterial vessels in the LV showed a slope of 0.7 +/- 0.5 compared with 0.3 +/- 0.3 of arterial vessels in the RV (P <or= 0.05). The slope for venous vessels in the LV was 0.14 +/- 0.14 vs. 0.06 +/- 0.05 in the RV. The present data reflect the local structure-function relation, where the significant gradient in intramyocardial pressure in the LV is associated with a significant gradient of IMT and IMT-to-R ratio, unlike the RV. This has important implications for local adaptation of transmural loading on the vessel wall and vascular remodeling when the loading is perturbed in cardiac hypertrophy or heart failure.
由于右心室和左心室(RV和LV)在不同的负荷条件下运作,它们在力学特性(心肌内压力)、结构和代谢方面存在差异也就不足为奇了;这些差异也可能导致冠状动脉血管壁的差异。我们的假设是,左心室内膜中层厚度(IMT)、IMT与半径之比(IMT-to-R)以及血管壁应力在透壁方向上的变化比右心室大得多。本研究使用了5只正常的约克夏猪。主要冠状动脉通过主动脉插管,用6.25%的戊二醛进行灌注固定,并用催化硅橡胶弹性体溶液进行铸型。从右心室和左心室的不同透壁位置获取动脉和静脉血管,进行组织学分析处理,并用成像软件进行测量。结果发现,左心室血管的IMT、IMT-to-R比值和舒张期周向应力的透壁梯度比右心室几乎为零的透壁斜率大。左心室动脉血管的IMT斜率为0.7±0.5,而右心室动脉血管的斜率为0.3±0.3(P≤0.05)。左心室静脉血管的斜率为0.14±0.14,而右心室为0.06±0.05。目前的数据反映了局部结构-功能关系,即左心室心肌内压力的显著梯度与IMT和IMT-to-R比值的显著梯度相关,这与右心室不同。这对于心肌肥厚或心力衰竭时负荷受到干扰时血管壁透壁负荷的局部适应和血管重塑具有重要意义。