Suppr超能文献

冠状动脉血管壁厚度在左心室呈跨壁变化,而在右心室则不然:对局部应力分布的影响。

Wall thickness of coronary vessels varies transmurally in the LV but not the RV: implications for local stress distribution.

作者信息

Choy Jenny Susana, Kassab Ghassan S

机构信息

Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, Indiana, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2009 Aug;297(2):H750-8. doi: 10.1152/ajpheart.01136.2008. Epub 2009 May 29.

Abstract

Since the right and left ventricles (RV and LV) function under different loading conditions, it is not surprising that they differ in their mechanics (intramyocardial pressure), structure, and metabolism; such differences may also contribute to differences in the coronary vessel wall. Our hypothesis is that intima-media thickness (IMT), IMT-to-radius (IMT-to-R) ratio, and vessel wall stress vary transmurally in the LV, much more than in the RV. Five normal Yorkshire swine were used in this study. The major coronary arteries were cannulated through the aorta and perfusion fixed with 6.25% glutaraldehyde and casted with a catalyzed silicone-elastomer solution. Arterial and venous vessels were obtained from different transmural locations of the RV and LV, processed for histological analysis, and measured with an imaging software. A larger transmural gradient was found for IMT, IMT-to-R ratio, and diastolic circumferential stress in vessels from the LV than the nearly zero transmural slope in the RV. The IMT of arterial vessels in the LV showed a slope of 0.7 +/- 0.5 compared with 0.3 +/- 0.3 of arterial vessels in the RV (P <or= 0.05). The slope for venous vessels in the LV was 0.14 +/- 0.14 vs. 0.06 +/- 0.05 in the RV. The present data reflect the local structure-function relation, where the significant gradient in intramyocardial pressure in the LV is associated with a significant gradient of IMT and IMT-to-R ratio, unlike the RV. This has important implications for local adaptation of transmural loading on the vessel wall and vascular remodeling when the loading is perturbed in cardiac hypertrophy or heart failure.

摘要

由于右心室和左心室(RV和LV)在不同的负荷条件下运作,它们在力学特性(心肌内压力)、结构和代谢方面存在差异也就不足为奇了;这些差异也可能导致冠状动脉血管壁的差异。我们的假设是,左心室内膜中层厚度(IMT)、IMT与半径之比(IMT-to-R)以及血管壁应力在透壁方向上的变化比右心室大得多。本研究使用了5只正常的约克夏猪。主要冠状动脉通过主动脉插管,用6.25%的戊二醛进行灌注固定,并用催化硅橡胶弹性体溶液进行铸型。从右心室和左心室的不同透壁位置获取动脉和静脉血管,进行组织学分析处理,并用成像软件进行测量。结果发现,左心室血管的IMT、IMT-to-R比值和舒张期周向应力的透壁梯度比右心室几乎为零的透壁斜率大。左心室动脉血管的IMT斜率为0.7±0.5,而右心室动脉血管的斜率为0.3±0.3(P≤0.05)。左心室静脉血管的斜率为0.14±0.14,而右心室为0.06±0.05。目前的数据反映了局部结构-功能关系,即左心室心肌内压力的显著梯度与IMT和IMT-to-R比值的显著梯度相关,这与右心室不同。这对于心肌肥厚或心力衰竭时负荷受到干扰时血管壁透壁负荷的局部适应和血管重塑具有重要意义。

相似文献

1
Wall thickness of coronary vessels varies transmurally in the LV but not the RV: implications for local stress distribution.
Am J Physiol Heart Circ Physiol. 2009 Aug;297(2):H750-8. doi: 10.1152/ajpheart.01136.2008. Epub 2009 May 29.
2
Right ventricular hypertrophy causes impairment of left ventricular diastolic function in the rat.
Basic Res Cardiol. 2007 Jan;102(1):19-27. doi: 10.1007/s00395-006-0620-5. Epub 2006 Sep 1.
4
Effects of coronary venous pressure on left ventricular diastolic distensibility.
Circ Res. 1990 Oct;67(4):923-32. doi: 10.1161/01.res.67.4.923.
5
A new observation on the stress distribution in the coronary artery wall.
J Biomech Eng. 2009 Nov;131(11):111011. doi: 10.1115/1.4000106.
7
Capillary perfusion and wall shear stress are restored in the coronary circulation of hypertrophic right ventricle.
Circ Res. 2007 Feb 2;100(2):273-83. doi: 10.1161/01.RES.0000257777.83431.13. Epub 2007 Jan 11.
8
Two-layer model of coronary artery vasoactivity.
J Appl Physiol (1985). 2013 May 15;114(10):1451-9. doi: 10.1152/japplphysiol.01237.2012. Epub 2013 Mar 7.
10
Effects of chronic right ventricular pressure overload on left ventricular diastolic function.
Am J Cardiol. 1993 Nov 15;72(15):1179-82. doi: 10.1016/0002-9149(93)90990-t.

引用本文的文献

1
Unraveling the Gordian knot of coronary pressure-flow autoregulation.
J Mol Cell Cardiol. 2024 May;190:82-91. doi: 10.1016/j.yjmcc.2024.04.008. Epub 2024 Apr 11.
2
Review of cardiac-coronary interaction and insights from mathematical modeling.
WIREs Mech Dis. 2024 May-Jun;16(3):e1642. doi: 10.1002/wsbm.1642. Epub 2024 Feb 5.
4
Coronary remodeling and biomechanics: Are we going with the flow in 2020?
Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H584-H592. doi: 10.1152/ajpheart.00634.2020. Epub 2020 Nov 13.
7
Microstructure-based biomechanics of coronary arteries in health and disease.
J Biomech. 2016 Aug 16;49(12):2548-59. doi: 10.1016/j.jbiomech.2016.03.023. Epub 2016 Mar 20.
8
miR-21-mediated decreased neutrophil apoptosis is a determinant of impaired coronary collateral growth in metabolic syndrome.
Am J Physiol Heart Circ Physiol. 2015 Jun 1;308(11):H1323-35. doi: 10.1152/ajpheart.00654.2014. Epub 2015 Apr 3.
10
Slackness between vessel and myocardium is necessary for coronary flow reserve.
Am J Physiol Heart Circ Physiol. 2012 Jun 1;302(11):H2230-42. doi: 10.1152/ajpheart.01184.2011. Epub 2012 Mar 9.

本文引用的文献

1
Cross-talk between cardiac muscle and coronary vasculature.
Physiol Rev. 2006 Oct;86(4):1263-308. doi: 10.1152/physrev.00029.2005.
2
Biomechanical considerations in the design of graft: the homeostasis hypothesis.
Annu Rev Biomed Eng. 2006;8:499-535. doi: 10.1146/annurev.bioeng.8.010506.105023.
3
A novel strategy for increasing wall thickness of coronary venules prior to retroperfusion.
Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H972-8. doi: 10.1152/ajpheart.00235.2006. Epub 2006 Apr 7.
4
Nonuniformity of axial and circumferential remodeling of large coronary veins in response to ligation.
Am J Physiol Heart Circ Physiol. 2006 Apr;290(4):H1558-65. doi: 10.1152/ajpheart.00928.2005. Epub 2005 Nov 18.
5
The effect of fixation and histological preparation on coronary artery dimensions.
Ann Biomed Eng. 2005 Aug;33(8):1027-33. doi: 10.1007/s10439-005-4854-4.
6
A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data.
Ann Biomed Eng. 2005 Aug;33(8):1015-26. doi: 10.1007/s10439-005-5758-z.
7
Influence of percutaneous coronary intervention on coronary microvascular resistance index.
Circulation. 2005 Jan 4;111(1):76-82. doi: 10.1161/01.CIR.0000151610.98409.2F. Epub 2004 Dec 20.
8
Remodelling of the left anterior descending artery in a porcine model of supravalvular aortic stenosis.
J Hypertens. 2002 Dec;20(12):2429-37. doi: 10.1097/00004872-200212000-00023.
9
Pulsation-induced dilation of subendocardial and subepicardial arterioles: effect on vasodilator sensitivity.
Am J Physiol Heart Circ Physiol. 2002 Jan;282(1):H311-9. doi: 10.1152/ajpheart.2002.282.1.H311.
10
Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy.
Prog Biophys Mol Biol. 1998;69(2-3):157-83. doi: 10.1016/s0079-6107(98)00006-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验