School of Instrument Science and Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096, China.
Med Biol Eng Comput. 2017 Sep;55(9):1589-1603. doi: 10.1007/s11517-017-1622-1. Epub 2017 Feb 4.
Effective feature extraction and classification methods are of great importance for motor imagery (MI)-based brain-computer interface (BCI) systems. The common spatial pattern (CSP) algorithm is a widely used feature extraction method for MI-based BCIs. In this work, we propose a novel spatial-frequency-temporal optimized feature sparse representation-based classification method. Optimal channels are selected based on relative entropy criteria. Significant CSP features on frequency-temporal domains are selected automatically to generate a column vector for sparse representation-based classification (SRC). We analyzed the performance of the new method on two public EEG datasets, namely BCI competition III dataset IVa which has five subjects and BCI competition IV dataset IIb which has nine subjects. Compared to the performance offered by the existing SRC method, the proposed method achieves average classification accuracy improvements of 21.568 and 14.38% for BCI competition III dataset IVa and BCI competition IV dataset IIb, respectively. Furthermore, our approach also shows better classification performance when compared to other competing methods for both datasets.
有效的特征提取和分类方法对于基于运动想象(MI)的脑机接口(BCI)系统非常重要。常见空间模式(CSP)算法是一种广泛用于基于 MI 的 BCI 的特征提取方法。在这项工作中,我们提出了一种新颖的基于空间-频率-时间优化特征稀疏表示分类方法。基于相对熵准则选择最优通道。自动选择频率-时间域上的显著 CSP 特征,生成稀疏表示分类(SRC)的列向量。我们在两个公共 EEG 数据集上分析了新方法的性能,即包含五个受试者的 BCI 竞赛 III 数据集 IVa 和包含九个受试者的 BCI 竞赛 IV 数据集 IIb。与现有的 SRC 方法相比,所提出的方法在 BCI 竞赛 III 数据集 IVa 和 BCI 竞赛 IV 数据集 IIb 上分别实现了平均分类精度提高 21.568%和 14.38%。此外,与两个数据集的其他竞争方法相比,我们的方法在分类性能上也表现更好。