Liu Jifeng, Sun Xiaochen, Kimerling Lionel C, Michel Jurgen
Department of Materials Science and Engineering, Microphotonics Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Opt Lett. 2009 Jun 1;34(11):1738-40. doi: 10.1364/ol.34.001738.
Lasers on Si are crucial components of monolithic electronic-photonic integration. Recently our theoretical analysis has shown that Ge, a pseudodirect bandgap material compatible with Si complementary metal oxide semiconductor technology, can be band engineered by tensile strain and n-type doping to achieve efficient light emission and optical gain from its direct gap transition. We report on what is to our knowledge the first experimental observation of optical gain in the wavelength range of 1,600-1,608 nm from the direct-gap transition of n(+) tensile-strained Ge on Si at room temperature under steady-state optical pumping. This experimental result confirms that the band-engineered Ge on Si is a promising gain medium for monolithic lasers on Si.
硅基激光器是单片电子 - 光子集成的关键组件。最近我们的理论分析表明,锗作为一种与硅互补金属氧化物半导体技术兼容的准直接带隙材料,可以通过拉伸应变和n型掺杂进行能带工程设计,以实现从其直接带隙跃迁中获得高效发光和光学增益。据我们所知,我们报道了在稳态光泵浦下,室温下从n(+)拉伸应变锗在硅上的直接带隙跃迁中首次在1600 - 1608 nm波长范围内观测到光学增益的实验结果。这一实验结果证实,硅基能带工程锗是硅基单片激光器的一种有前景的增益介质。