Suppr超能文献

贝叶斯混合模型基因-环境和基因-基因相互作用。

Bayesian mixture modeling of gene-environment and gene-gene interactions.

机构信息

International Agency for Research on Cancer, Lyon, France.

出版信息

Genet Epidemiol. 2010 Jan;34(1):16-25. doi: 10.1002/gepi.20429.

Abstract

With the advent of rapid and relatively cheap genotyping technologies there is now the opportunity to attempt to identify gene-environment and gene-gene interactions when the number of genes and environmental factors is potentially large. Unfortunately the dimensionality of the parameter space leads to a computational explosion in the number of possible interactions that may be investigated. The full model that includes all interactions and main effects can be unstable, with wide confidence intervals arising from the large number of estimated parameters. We describe a hierarchical mixture model that allows all interactions to be investigated simultaneously, but assumes the effects come from a mixture prior with two components, one that reflects small null effects and the second for epidemiologically significant effects. Effects from the former are effectively set to zero, hence increasing the power for the detection of real signals. The prior framework is very flexible, which allows substantive information to be incorporated into the analysis. We illustrate the methods first using simulation, and then on data from a case-control study of lung cancer in Central and Eastern Europe.

摘要

随着快速且相对廉价的基因分型技术的出现,现在有机会尝试在基因和环境因素数量较多的情况下,确定基因-环境和基因-基因相互作用。不幸的是,参数空间的维度导致可能研究的相互作用数量呈计算爆炸式增长。包含所有相互作用和主效应的完整模型可能不稳定,由于估计参数数量众多,置信区间较宽。我们描述了一种层次混合模型,该模型允许同时研究所有相互作用,但假设效应来自具有两个分量的混合先验,一个反映小的零效应,第二个反映具有流行病学意义的效应。前者的效应实际上被设置为零,从而提高了检测真实信号的能力。该先验框架非常灵活,允许将实质性信息纳入分析中。我们首先使用模拟来说明这些方法,然后再使用中欧和东欧肺癌病例对照研究的数据进行说明。

相似文献

1
Bayesian mixture modeling of gene-environment and gene-gene interactions.
Genet Epidemiol. 2010 Jan;34(1):16-25. doi: 10.1002/gepi.20429.
2
Bayesian variable selection for hierarchical gene-environment and gene-gene interactions.
Hum Genet. 2015 Jan;134(1):23-36. doi: 10.1007/s00439-014-1478-5. Epub 2014 Aug 26.
4
Bayesian variable and model selection methods for genetic association studies.
Genet Epidemiol. 2009 Jan;33(1):27-37. doi: 10.1002/gepi.20353.
5
A flexible Bayesian model for studying gene-environment interaction.
PLoS Genet. 2012 Jan;8(1):e1002482. doi: 10.1371/journal.pgen.1002482. Epub 2012 Jan 26.
6
Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks.
BMC Syst Biol. 2012;6 Suppl 3(Suppl 3):S14. doi: 10.1186/1752-0509-6-S3-S14. Epub 2012 Dec 17.
7
An efficient Bayesian model selection approach for interacting quantitative trait loci models with many effects.
Genetics. 2007 Jul;176(3):1865-77. doi: 10.1534/genetics.107.071365. Epub 2007 May 4.
9
Epistasis Test in Meta-Analysis: A Multi-Parameter Markov Chain Monte Carlo Model for Consistency of Evidence.
PLoS One. 2016 Apr 5;11(4):e0152891. doi: 10.1371/journal.pone.0152891. eCollection 2016.
10
A Bayesian multilocus association method: allowing for higher-order interaction in association studies.
Genetics. 2007 Jun;176(2):1197-208. doi: 10.1534/genetics.107.071696. Epub 2007 Apr 15.

引用本文的文献

2
Machine learning-enhanced multi-trait genomic prediction for optimizing cannabinoid profiles in cannabis.
Plant J. 2025 Jan;121(1):e17164. doi: 10.1111/tpj.17164. Epub 2024 Nov 27.
3
Bayesian Approaches in Exploring Gene-environment and Gene-gene Interactions: A Comprehensive Review.
Cancer Genomics Proteomics. 2023 Dec;20(6suppl):669-678. doi: 10.21873/cgp.20414.
4
Empirical bayes approach for dynamic bayesian borrowing for clinical trials in rare diseases.
J Pharmacokinet Pharmacodyn. 2023 Dec;50(6):495-499. doi: 10.1007/s10928-023-09860-0. Epub 2023 May 6.
5
An Improved Estimation for Heterogeneous Datasets with Lower Detection Limits regarding Environmental Health.
Comput Math Methods Med. 2022 Jul 12;2022:4414582. doi: 10.1155/2022/4414582. eCollection 2022.
6
Bayesian Analysis of Trends in Utilization of Maternal Healthcare Services in Pakistan during 2006-2018.
Comput Math Methods Med. 2021 Nov 27;2021:4691477. doi: 10.1155/2021/4691477. eCollection 2021.
7
Genetic interactions effects for cancer disease identification using computational models: a review.
Med Biol Eng Comput. 2021 Apr;59(4):733-758. doi: 10.1007/s11517-021-02343-9. Epub 2021 Apr 11.
8
Assessing the future progression of COVID-19 in Iran and its neighbors using Bayesian models.
Infect Dis Model. 2021;6:343-350. doi: 10.1016/j.idm.2021.01.005. Epub 2021 Jan 22.
9
An Expectation Conditional Maximization approach for Gaussian graphical models.
J Comput Graph Stat. 2019;28(4):767-777. doi: 10.1080/10618600.2019.1609976. Epub 2019 Jun 19.
10
Identifying gene-gene interactions using penalized tensor regression.
Stat Med. 2018 Feb 20;37(4):598-610. doi: 10.1002/sim.7523. Epub 2017 Oct 16.

本文引用的文献

1
Conditional variable importance for random forests.
BMC Bioinformatics. 2008 Jul 11;9:307. doi: 10.1186/1471-2105-9-307.
2
Multiple ADH genes are associated with upper aerodigestive cancers.
Nat Genet. 2008 Jun;40(6):707-9. doi: 10.1038/ng.151. Epub 2008 May 25.
5
Biostatistical aspects of genome-wide association studies.
Biom J. 2008 Feb;50(1):8-28. doi: 10.1002/bimj.200710398.
8
A support vector machine approach for detecting gene-gene interaction.
Genet Epidemiol. 2008 Feb;32(2):152-67. doi: 10.1002/gepi.20272.
9
Novel methods for detecting epistasis in pharmacogenomics studies.
Pharmacogenomics. 2007 Sep;8(9):1229-41. doi: 10.2217/14622416.8.9.1229.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验