Suppr超能文献

机器学习增强的多性状基因组预测,用于优化大麻中的大麻素谱。

Machine learning-enhanced multi-trait genomic prediction for optimizing cannabinoid profiles in cannabis.

作者信息

Yoosefzadeh Najafabadi Mohsen, Torkamaneh Davoud

机构信息

Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada.

Département de phytologie, Université Laval, Québec City, Quebec, Canada.

出版信息

Plant J. 2025 Jan;121(1):e17164. doi: 10.1111/tpj.17164. Epub 2024 Nov 27.

Abstract

Cannabis sativa L., known for its medicinal and psychoactive properties, has recently experienced rapid market expansion but remains understudied in terms of its fundamental biology due to historical prohibitions. This pioneering study implements GS and ML to optimize cannabinoid profiles in cannabis breeding. We analyzed a representative population of drug-type cannabis accessions, quantifying major cannabinoids and utilizing high-density genotyping with 250K SNPs for GS. Our evaluations of various models-including ML algorithms, statistical methods, and Bayesian approaches-highlighted Random Forest's superior predictive accuracy for single and multi-trait genomic predictions, particularly for THC, CBD, and their precursors. Multi-trait analyses elucidated complex genetic interdependencies and identified key loci crucial to cannabinoid biosynthesis. These results demonstrate the efficacy of integrating GS and ML in developing cannabis varieties with tailored cannabinoid profiles.

摘要

大麻(Cannabis sativa L.)以其药用和精神活性特性而闻名,最近经历了快速的市场扩张,但由于历史上的禁令,其基础生物学方面仍未得到充分研究。这项开创性研究采用基因组选择(GS)和机器学习(ML)来优化大麻育种中的大麻素谱。我们分析了一个具有代表性的药用型大麻种质群体,对主要大麻素进行定量,并利用具有25万个单核苷酸多态性(SNP)的高密度基因分型进行基因组选择。我们对各种模型的评估——包括机器学习算法、统计方法和贝叶斯方法——突出了随机森林在单性状和多性状基因组预测方面的卓越预测准确性,特别是对于四氢大麻酚(THC)、大麻二酚(CBD)及其前体。多性状分析阐明了复杂的遗传相互依赖性,并确定了对大麻素生物合成至关重要的关键基因座。这些结果证明了在培育具有定制大麻素谱的大麻品种中整合基因组选择和机器学习的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/019d/11711876/6bc038f120c4/TPJ-121-0-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验