Suppr超能文献

人类功能性磁共振成像揭示了生物运动处理中形状和运动线索的分离与整合。

Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing.

作者信息

Jastorff Jan, Orban Guy A

机构信息

Laboratorium voor Neuro- en Psychophysiologie, Katholieke Universiteit Leuven Medical School, B-3000 Leuven, Belgium.

出版信息

J Neurosci. 2009 Jun 3;29(22):7315-29. doi: 10.1523/JNEUROSCI.4870-08.2009.

Abstract

In a series of human functional magnetic resonance imaging experiments, we systematically manipulated point-light stimuli to identify the contributions of the various areas implicated in biological motion processing (for review, see Giese and Poggio, 2003). The first experiment consisted of a 2 x 2 factorial design with global shape and kinematics as factors. In two additional experiments, we investigated the contributions of local opponent motion, the complexity of the portrayed movement and a one-back task to the activation pattern. Experiment 1 revealed a clear separation between shape and motion processing, resulting in two branches of activation. A ventral region, extending from the lateral occipital sulcus to the posterior inferior temporal gyrus, showed a main effect of shape and its extension into the fusiform gyrus also an interaction. The dorsal region, including the posterior inferior temporal sulcus and the posterior superior temporal sulcus (pSTS), showed a main effect of kinematics together with an interaction. Region of interest analysis identified these interaction sites as the extrastriate and fusiform body areas (EBA and FBA). The local opponent motion cue yielded only little activation, limited to the ventral region (experiment 3). Our results suggest that the EBA and the FBA correspond to the initial stages in visual action analysis, in which the performed action is linked to the body of the actor. Moreover, experiment 2 indicates that the body areas are activated automatically even in the absence of a task, whereas other cortical areas like pSTS or frontal regions depend on the complexity of movements or task instructions for their activation.

摘要

在一系列人类功能磁共振成像实验中,我们系统地操控点光刺激,以确定参与生物运动处理的各个区域的作用(综述见Giese和Poggio,2003年)。第一个实验采用2×2析因设计,将全局形状和运动学作为因素。在另外两个实验中,我们研究了局部对抗运动、所描绘运动的复杂性以及一个回溯任务对激活模式的作用。实验1揭示了形状处理和运动处理之间的明显分离,产生了两个激活分支。一个腹侧区域,从枕外侧沟延伸至颞下回后部,显示出形状的主要效应,其延伸至梭状回也存在交互作用。背侧区域,包括颞下沟后部和颞上沟后部(pSTS),显示出运动学的主要效应以及交互作用。感兴趣区域分析将这些交互作用部位确定为纹外和梭状身体区域(EBA和FBA)。局部对抗运动线索仅产生少量激活,局限于腹侧区域(实验3)。我们的结果表明,EBA和FBA对应于视觉动作分析的初始阶段,其中所执行的动作与动作执行者的身体相关联。此外,实验2表明,即使在没有任务的情况下,身体区域也会自动激活,而其他皮层区域,如pSTS或额叶区域,其激活取决于运动的复杂性或任务指令。

相似文献

2
Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex.
J Neurophysiol. 2008 Mar;99(3):1380-93. doi: 10.1152/jn.01223.2007. Epub 2008 Jan 2.
3
Dissociation of extrastriate body and biological-motion selective areas by manipulation of visual-motor congruency.
Neuropsychologia. 2009 Dec;47(14):3118-24. doi: 10.1016/j.neuropsychologia.2009.07.012. Epub 2009 Jul 28.
4
Integration of shape and motion cues in biological motion processing in the monkey STS.
Neuroimage. 2012 Apr 2;60(2):911-21. doi: 10.1016/j.neuroimage.2011.12.087. Epub 2012 Jan 10.
5
Role of dorsal and ventral stream development in biological motion perception.
Neuroreport. 2008 Dec 3;19(18):1763-7. doi: 10.1097/WNR.0b013e328318ede3.
6
Distinct neural mechanisms for body form and body motion discriminations.
J Neurosci. 2014 Jan 8;34(2):574-85. doi: 10.1523/JNEUROSCI.4032-13.2014.
8
Occipitotemporal activation evoked by the perception of human bodies is modulated by the presence or absence of the face.
Neuropsychologia. 2006;44(10):1919-27. doi: 10.1016/j.neuropsychologia.2006.01.035. Epub 2006 Mar 20.
9
Visual phonetic processing localized using speech and nonspeech face gestures in video and point-light displays.
Hum Brain Mapp. 2011 Oct;32(10):1660-76. doi: 10.1002/hbm.21139. Epub 2010 Sep 17.
10
Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis.
Exp Brain Res. 2018 Mar;236(3):907-918. doi: 10.1007/s00221-018-5175-9. Epub 2018 Jan 23.

引用本文的文献

1
Understanding biological motion through the lens of animate motion processing.
Front Psychol. 2025 Aug 12;16:1630742. doi: 10.3389/fpsyg.2025.1630742. eCollection 2025.
2
Incidental visual processing of spatiotemporal cues in communicative interactions: An fMRI investigation.
Imaging Neurosci (Camb). 2023 Dec 18;1. doi: 10.1162/imag_a_00048. eCollection 2023.
6
Noncortical coding of biological motion in newborn chicks' brain.
Cereb Cortex. 2024 Jun 4;34(6). doi: 10.1093/cercor/bhae262.
7
Brain mechanisms involved in the perception of emotional gait: A combined magnetoencephalography and virtual reality study.
PLoS One. 2024 Mar 29;19(3):e0299103. doi: 10.1371/journal.pone.0299103. eCollection 2024.
9
Me, Myself, and I: Neural Activity for Self versus Other across Development.
Children (Basel). 2023 Dec 12;10(12):1914. doi: 10.3390/children10121914.
10
Representational momentum of biological motion in full-body, point-light and single-dot displays.
Sci Rep. 2023 Jun 28;13(1):10488. doi: 10.1038/s41598-023-36870-2.

本文引用的文献

1
Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to "Biological Motion" Stimuli.
J Cogn Neurosci. 1994 Spring;6(2):99-116. doi: 10.1162/jocn.1994.6.2.99.
2
Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.
Cereb Cortex. 2009 Mar;19(3):593-611. doi: 10.1093/cercor/bhn109. Epub 2008 Jul 16.
3
Cortical responses to self and others.
Hum Brain Mapp. 2009 Mar;30(3):951-62. doi: 10.1002/hbm.20558.
4
Visual perception and neural correlates of novel 'biological motion'.
Vision Res. 2007 Sep;47(21):2786-97. doi: 10.1016/j.visres.2007.07.017. Epub 2007 Sep 6.
5
Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas.
J Neurophysiol. 2007 Sep;98(3):1626-33. doi: 10.1152/jn.00012.2007. Epub 2007 Jun 27.
7
Perception of human motion.
Annu Rev Psychol. 2007;58:47-73. doi: 10.1146/annurev.psych.57.102904.190152.
8
Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus.
J Neurosci. 2006 May 31;26(22):5929-47. doi: 10.1523/JNEUROSCI.0824-06.2006.
10
A model of biological motion perception from configural form cues.
J Neurosci. 2006 Mar 15;26(11):2894-906. doi: 10.1523/JNEUROSCI.4915-05.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验