Sommerer F, Cerutti F, Parodi K, Ferrari A, Enghardt W, Aiginger H
CERN, Geneva, Switzerland. Atomic Institute of the Austrian Universities, Vienna, Austria.
Phys Med Biol. 2009 Jul 7;54(13):3979-96. doi: 10.1088/0031-9155/54/13/003. Epub 2009 Jun 3.
(16)O and (12)C ion beams will be used-besides lighter ions-for cancer treatment at the Heidelberg Ion Therapy Center (HIT), Germany. It is planned to monitor the treatment by means of in-beam positron emission tomography (PET) as it is done for therapy with (12)C beams at the experimental facility at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. To enable PET also for (16)O beams, experimental data of the beta(+)-activity created by these beams are needed. Therefore, in-beam PET measurements of the activity created by (16)O beams of various energies on targets of PMMA, water and graphite were performed at GSI for the first time. Additionally reference measurements of (12)C beams on the same target materials were done. The results of the measurements are presented. The deduction of clinically relevant results from in-beam PET data requires reliable simulations of the beta(+)-activity production, which is done presently by a dedicated code limited to (12)C beams. Because this code is not extendable to other ions in an easy way, a new code, capable of simulating the production of the beta(+)-activity by all ions of interest, is needed. Our choice is the general purpose Monte Carlo code FLUKA which was used to simulate the ion transport, the beta(+)-active isotope production, the decay, the positron annihilation and the transport of the annihilation photons. The detector response was simulated with an established software that gives the output in the same list-mode data format as in the experiment. This allows us to use the same software to reconstruct measured and simulated data, which makes comparisons easier and more reliable. The calculated activity distribution shows general good agreement with the measurements.
除了较轻的离子外,德国海德堡离子治疗中心(HIT)将使用氧离子((^{16}O))和碳离子((^{12}C))进行癌症治疗。计划采用束内正电子发射断层扫描(PET)对治疗过程进行监测,就如同在德国达姆施塔特的亥姆霍兹重离子研究中心(GSI)的实验设施中对(^{12}C)束治疗所做的那样。为了能对(^{16}O)束也进行PET监测,需要这些束产生的β⁺放射性的实验数据。因此,GSI首次对不同能量的(^{16}O)束在聚甲基丙烯酸甲酯(PMMA)、水和石墨靶上产生的放射性进行了束内PET测量。此外,还对相同靶材料上的(^{12}C)束进行了参考测量。给出了测量结果。从束内PET数据推导临床相关结果需要对β⁺放射性产生进行可靠的模拟,目前这是通过一个仅限于(^{12}C)束的专用代码来完成的。由于该代码不易扩展到其他离子,因此需要一个新的代码,能够模拟所有感兴趣离子产生的β⁺放射性。我们选择的是通用蒙特卡罗代码FLUKA,它用于模拟离子传输、β⁺放射性同位素产生、衰变、正电子湮灭以及湮灭光子的传输。使用一个成熟的软件模拟探测器响应,该软件以与实验相同的列表模式数据格式给出输出。这使我们能够使用相同的软件重建测量数据和模拟数据,从而使比较更容易、更可靠。计算得到的放射性分布与测量结果总体上吻合良好。