Suppr超能文献

健康与疾病状态下的人类大脑网络

Human brain networks in health and disease.

作者信息

Bassett Danielle S, Bullmore Edward T

机构信息

Department of Psychiatry, Behavioral and Clinical Neurosciences Institute, Addenbrooke's Hospital, Cambridge, UK.

出版信息

Curr Opin Neurol. 2009 Aug;22(4):340-7. doi: 10.1097/WCO.0b013e32832d93dd.

Abstract

PURPOSE OF REVIEW

Recent developments in the statistical physics of complex networks have been translated to neuroimaging data in an effort to enhance our understanding of human brain structural and functional networks. This review focuses on studies using graph theoretical measures applied to structural MRI, diffusion MRI, functional MRI, electroencephalography, and magnetoencephalography data.

RECENT FINDINGS

Complex network properties have been identified with some consistency in all modalities of neuroimaging data and over a range of spatial and time scales. Conserved properties include small worldness, high efficiency of information transfer for low wiring cost, modularity, and the existence of network hubs. Structural and functional network metrics have been found to be heritable and to change with normal aging. Clinical studies, principally in Alzheimer's disease and schizophrenia, have identified abnormalities of network configuration in patients. Future work will likely involve efforts to synthesize structural and functional networks in integrated models and to explore the interdependence of network configuration and cognitive performance.

SUMMARY

Graph theoretical analysis of neuroimaging data is growing rapidly and could potentially provide a relatively simple but powerful quantitative framework to describe and compare whole human brain structural and functional networks under diverse experimental and clinical conditions.

摘要

综述目的

复杂网络统计物理学的最新进展已应用于神经影像学数据,以增进我们对人类脑结构和功能网络的理解。本综述重点关注使用图论方法对结构磁共振成像(MRI)、扩散MRI、功能MRI、脑电图和脑磁图数据进行的研究。

最新发现

在神经影像学数据的所有模式以及一系列空间和时间尺度上,已在一定程度上一致地识别出复杂网络特性。保守特性包括小世界性、以低布线成本实现高效信息传递、模块化以及网络枢纽的存在。结构和功能网络指标已被发现具有遗传性,并随正常衰老而变化。主要针对阿尔茨海默病和精神分裂症的临床研究已确定患者存在网络结构异常。未来的工作可能包括在综合模型中整合结构和功能网络,并探索网络结构与认知表现之间的相互依存关系。

总结

对神经影像学数据的图论分析正在迅速发展,可能会提供一个相对简单但强大的定量框架,用于描述和比较在不同实验和临床条件下的全脑结构和功能网络。

相似文献

1
Human brain networks in health and disease.
Curr Opin Neurol. 2009 Aug;22(4):340-7. doi: 10.1097/WCO.0b013e32832d93dd.
2
Graph theoretical modeling of brain connectivity.
Curr Opin Neurol. 2010 Aug;23(4):341-50. doi: 10.1097/WCO.0b013e32833aa567.
3
Complex brain networks: graph theoretical analysis of structural and functional systems.
Nat Rev Neurosci. 2009 Mar;10(3):186-98. doi: 10.1038/nrn2575. Epub 2009 Feb 4.
4
Graph theoretical analysis of human brain structural networks.
Rev Neurosci. 2011;22(5):551-63. doi: 10.1515/RNS.2011.039. Epub 2011 Aug 24.
6
From brain topography to brain topology: relevance of graph theory to functional neuroscience.
Neuroreport. 2013 Jul 10;24(10):536-43. doi: 10.1097/WNR.0b013e3283621234.
7
Annual research review: Growth connectomics--the organization and reorganization of brain networks during normal and abnormal development.
J Child Psychol Psychiatry. 2015 Mar;56(3):299-320. doi: 10.1111/jcpp.12365. Epub 2014 Dec 1.
10

引用本文的文献

1
Bayesian inference of frequency-specific functional connectivity in MEG imaging using a spectral graph model.
Imaging Neurosci (Camb). 2024 Oct 10;2. doi: 10.1162/imag_a_00307. eCollection 2024.
3
Structural and genetic determinants of zebrafish functional brain networks.
Sci Adv. 2025 Jul 11;11(28):eadv7576. doi: 10.1126/sciadv.adv7576.
5
Structural covariance analysis for neurodegenerative and neuroinflammatory brain disorders.
Brain. 2025 Sep 3;148(9):3072-3084. doi: 10.1093/brain/awaf151.
6
Tell me why: A scoping review on the fundamental building blocks of fMRI-based network analysis.
Neuroimage Clin. 2025;46:103785. doi: 10.1016/j.nicl.2025.103785. Epub 2025 Apr 13.
8
Improved whole-brain reconfiguration efficiency reveals mechanisms of speech rehabilitation in cleft lip and palate patients: an fMRI study.
Front Aging Neurosci. 2025 Mar 4;17:1536658. doi: 10.3389/fnagi.2025.1536658. eCollection 2025.
9
Graph Theoretical Measures for Alzheimer's, MCI, and Normal Controls: A Comparative Study Using MRI Data.
Ann Neurosci. 2025 Jan;32(1):21-28. doi: 10.1177/09727531231186503. Epub 2023 Sep 1.
10
The role of structural connectivity on brain function through a Markov model of signal transmission.
bioRxiv. 2025 Feb 11:2024.11.10.622842. doi: 10.1101/2024.11.10.622842.

本文引用的文献

1
Broadband criticality of human brain network synchronization.
PLoS Comput Biol. 2009 Mar;5(3):e1000314. doi: 10.1371/journal.pcbi.1000314. Epub 2009 Mar 20.
2
Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses.
Exp Neurol. 2009 May;217(1):197-204. doi: 10.1016/j.expneurol.2009.02.001. Epub 2009 Feb 13.
4
Complex brain networks: graph theoretical analysis of structural and functional systems.
Nat Rev Neurosci. 2009 Mar;10(3):186-98. doi: 10.1038/nrn2575. Epub 2009 Feb 4.
5
Predicting human resting-state functional connectivity from structural connectivity.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40. doi: 10.1073/pnas.0811168106. Epub 2009 Feb 2.
6
Neural basis for brain responses to TV commercials: a high-resolution EEG study.
IEEE Trans Neural Syst Rehabil Eng. 2008 Dec;16(6):522-31. doi: 10.1109/TNSRE.2008.2009784.
7
Age-related changes in modular organization of human brain functional networks.
Neuroimage. 2009 Feb 1;44(3):715-23. doi: 10.1016/j.neuroimage.2008.09.062. Epub 2008 Nov 5.
8
Characterizing dynamic functional connectivity across sleep stages from EEG.
Brain Topogr. 2009 Sep;22(2):119-33. doi: 10.1007/s10548-008-0071-4. Epub 2008 Nov 13.
9
Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease.
Brain. 2009 Jan;132(Pt 1):213-24. doi: 10.1093/brain/awn262. Epub 2008 Oct 24.
10
Altered sleep brain functional connectivity in acutely depressed patients.
Hum Brain Mapp. 2009 Jul;30(7):2207-19. doi: 10.1002/hbm.20662.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验