Bassett Danielle S, Bullmore Edward T
Department of Psychiatry, Behavioral and Clinical Neurosciences Institute, Addenbrooke's Hospital, Cambridge, UK.
Curr Opin Neurol. 2009 Aug;22(4):340-7. doi: 10.1097/WCO.0b013e32832d93dd.
Recent developments in the statistical physics of complex networks have been translated to neuroimaging data in an effort to enhance our understanding of human brain structural and functional networks. This review focuses on studies using graph theoretical measures applied to structural MRI, diffusion MRI, functional MRI, electroencephalography, and magnetoencephalography data.
Complex network properties have been identified with some consistency in all modalities of neuroimaging data and over a range of spatial and time scales. Conserved properties include small worldness, high efficiency of information transfer for low wiring cost, modularity, and the existence of network hubs. Structural and functional network metrics have been found to be heritable and to change with normal aging. Clinical studies, principally in Alzheimer's disease and schizophrenia, have identified abnormalities of network configuration in patients. Future work will likely involve efforts to synthesize structural and functional networks in integrated models and to explore the interdependence of network configuration and cognitive performance.
Graph theoretical analysis of neuroimaging data is growing rapidly and could potentially provide a relatively simple but powerful quantitative framework to describe and compare whole human brain structural and functional networks under diverse experimental and clinical conditions.
复杂网络统计物理学的最新进展已应用于神经影像学数据,以增进我们对人类脑结构和功能网络的理解。本综述重点关注使用图论方法对结构磁共振成像(MRI)、扩散MRI、功能MRI、脑电图和脑磁图数据进行的研究。
在神经影像学数据的所有模式以及一系列空间和时间尺度上,已在一定程度上一致地识别出复杂网络特性。保守特性包括小世界性、以低布线成本实现高效信息传递、模块化以及网络枢纽的存在。结构和功能网络指标已被发现具有遗传性,并随正常衰老而变化。主要针对阿尔茨海默病和精神分裂症的临床研究已确定患者存在网络结构异常。未来的工作可能包括在综合模型中整合结构和功能网络,并探索网络结构与认知表现之间的相互依存关系。
对神经影像学数据的图论分析正在迅速发展,可能会提供一个相对简单但强大的定量框架,用于描述和比较在不同实验和临床条件下的全脑结构和功能网络。