Légaré Antoine, Lemieux Mado, Boily Vincent, Poulin Sandrine, Légaré Arthur, Desrosiers Patrick, De Koninck Paul
Centre de recherche CERVO, Québec (Québec), Canada.
Département de physique, de génie physique et d'optique, Université Laval, Québec (Québec), Canada.
Sci Adv. 2025 Jul 11;11(28):eadv7576. doi: 10.1126/sciadv.adv7576.
Network science has revealed universal brain connectivity principles across species. However, several macroscopic network features established in human neuroimaging studies remain underexplored at cellular scales in small animal models. Here, we use whole-brain calcium imaging in larval zebrafish to investigate the structural and genetic basis of functional brain networks. Mesoscopic functional connectivity (FC) robustly captures the individuality of larvae and reflects structural connectivity (SC) derived from single-neuron reconstructions. Several connectome properties, including diffusion mechanisms and indirect pathways, predict interregional correlations. SC and FC share a hierarchical modular architecture, with structural modules shaping spontaneous and stimulus-driven activity patterns. Visual stimuli and tail monitoring reveal a functional gradient that coincides with sensorimotor functions. Last, regional expression levels of specific genes predict interregional FC. Our findings reproduce key mammalian brain network features, demonstrating larval zebrafish as a powerful model for studying large-scale network phenomena in a small and optically accessible vertebrate brain.
网络科学揭示了跨物种的通用大脑连接原理。然而,人类神经影像学研究中确立的几个宏观网络特征在小动物模型的细胞尺度上仍未得到充分探索。在这里,我们使用斑马鱼幼体的全脑钙成像来研究功能性脑网络的结构和遗传基础。介观功能连接性(FC)有力地捕捉了幼体的个体特征,并反映了源自单神经元重建的结构连接性(SC)。包括扩散机制和间接通路在内的几个连接组特性可预测区域间的相关性。SC和FC共享分层模块化架构,结构模块塑造自发和刺激驱动的活动模式。视觉刺激和尾部监测揭示了与感觉运动功能一致的功能梯度。最后,特定基因的区域表达水平可预测区域间的FC。我们的研究结果重现了关键的哺乳动物脑网络特征,证明斑马鱼幼体是研究小型且光学上可及的脊椎动物大脑中大规模网络现象的有力模型。