Mongay-Ochoa Neus, Gonzalez-Escamilla Gabriel, Fleischer Vinzenz, Pareto Deborah, Rovira Àlex, Sastre-Garriga Jaume, Groppa Sergiu
Department of Neurology, Saarland University and Saarland University Medical Center, Homburg 66421, Germany.
Mutiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.
Brain. 2025 Sep 3;148(9):3072-3084. doi: 10.1093/brain/awaf151.
Structural MRI can robustly assess brain tissue alterations related to neurological diseases and ageing. Traditional morphological MRI metrics, such as cortical volume and thickness, only partially relate to functional impairment and disease trajectories at the individual level. Emerging research has increasingly focused on reconstructing interregional meso- and macro-structural relationships in the brain by analysing covarying morphometric patterns. These patterns suggest that structural variations in specific brain regions tend to covary with deviations in other regions across individuals, a phenomenon termed structural covariance. This concept reflects the idea that physiological and pathological processes follow an anatomically defined spreading pattern. Advanced computational strategies, particularly those within the graph-theoretical framework, yield quantifiable properties at both the whole-brain and regional levels, which correlate more closely with the clinical state or cognitive performance than classical atrophy patterns. This review highlights cutting-edge methods for evaluating morphometric covariance networks on an individual basis, with a focus on their utility in characterizing ageing, central nervous system inflammation and neurodegeneration. Specifically, these methods hold significant potential for quantifying structural alterations in patients with Alzheimer's disease, Parkinson's disease, frontotemporal dementia and multiple sclerosis. By capturing the distinctive morphometric organization of each individual's brain, structural covariance network analyses allow the tracking and prediction of pathology progression and clinical outcomes, information that can be integrated into clinical decision-making and used as variables in clinical trials. Furthermore, by investigating distinct and cross-diagnostic patterns of structural covariance, these approaches offer insights into shared mechanistic processes critical to understanding severe neurological disorders and their therapeutic implications. Such advancements pave the way for more precise diagnostic tools and targeted therapeutic strategies.
结构磁共振成像(MRI)能够可靠地评估与神经疾病和衰老相关的脑组织改变。传统的形态学MRI指标,如皮质体积和厚度,仅在个体水平上部分地与功能损害和疾病轨迹相关。新兴研究越来越多地聚焦于通过分析共变的形态测量模式来重建大脑区域间的中观和宏观结构关系。这些模式表明,特定脑区的结构变化往往与个体间其他区域的偏差共变,这一现象被称为结构协方差。这一概念反映了生理和病理过程遵循解剖学定义的扩散模式这一观点。先进的计算策略,特别是那些在图论框架内的策略,能够在全脑和区域水平上产生可量化的属性,这些属性与临床状态或认知表现的相关性比经典的萎缩模式更为紧密。本综述重点介绍了基于个体评估形态测量协方差网络的前沿方法,重点关注它们在表征衰老、中枢神经系统炎症和神经退行性变方面的效用。具体而言,这些方法在量化阿尔茨海默病、帕金森病、额颞叶痴呆和多发性硬化症患者的结构改变方面具有巨大潜力。通过捕捉每个人大脑独特的形态测量组织,结构协方差网络分析能够追踪和预测病理进展及临床结果,这些信息可整合到临床决策中,并用作临床试验中的变量。此外,通过研究结构协方差的独特和交叉诊断模式,这些方法为理解严重神经疾病及其治疗意义的关键共同机制过程提供了见解。此类进展为更精确的诊断工具和靶向治疗策略铺平了道路。