Suppr超能文献

胆汁酸转运体。

Bile acid transporters.

机构信息

Department of Internal Medicine and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.

出版信息

J Lipid Res. 2009 Dec;50(12):2340-57. doi: 10.1194/jlr.R900012-JLR200. Epub 2009 Jun 4.

Abstract

In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na(+) taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTalpha-OSTbeta. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers.

摘要

在肝脏和肠道中,转运蛋白在维持肠肝循环和胆汁酸稳态方面发挥着关键作用。在过去的二十年中,人们在鉴定各个膜转运蛋白并揭示其复杂的调节机制方面取得了重大进展。在肝脏中,胆盐通过 Na(+)牛磺胆酸钠共转运多肽有效地穿过窦状膜转运,有机阴离子转运蛋白家族的成员也协助其转运。然后,胆汁酸以 ATP 依赖的方式通过胆汁盐输出泵分泌到胆管膜中。随着胆汁进入小肠腔,胆汁酸几乎在回肠中被顶端钠依赖性胆汁酸转运蛋白完全回收。胆汁酸被转运穿过肠上皮细胞到基底外侧膜,并通过最近鉴定的异源有机溶质转运蛋白 OSTalpha-OSTbeta 被排出到门静脉循环中。除了肝细胞和肠细胞,这些胆汁酸转运蛋白的亚群还表达在胆管、肾脏和结肠上皮细胞中,它们有助于维持胆汁酸稳态并发挥重要的细胞保护作用。本文将综述我们目前对这些重要载体的生理作用和调节的理解。

相似文献

1
Bile acid transporters.
J Lipid Res. 2009 Dec;50(12):2340-57. doi: 10.1194/jlr.R900012-JLR200. Epub 2009 Jun 4.
2
The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter.
J Biol Chem. 2005 Feb 25;280(8):6960-8. doi: 10.1074/jbc.M412752200. Epub 2004 Nov 24.
3
Role of the intestinal bile acid transporters in bile acid and drug disposition.
Handb Exp Pharmacol. 2011(201):169-203. doi: 10.1007/978-3-642-14541-4_4.
4
Targeting the Four Pillars of Enterohepatic Bile Salt Cycling; Lessons From Genetics and Pharmacology.
Hepatology. 2021 Jun;73(6):2577-2585. doi: 10.1002/hep.31651. Epub 2021 May 24.
5
Bile acid transporters: structure, function, regulation and pathophysiological implications.
Pharm Res. 2007 Oct;24(10):1803-23. doi: 10.1007/s11095-007-9289-1. Epub 2007 Apr 3.
6
Bile acid transporters in health and disease.
Xenobiotica. 2008 Jul;38(7-8):1043-71. doi: 10.1080/00498250802040584.
9
The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3891-6. doi: 10.1073/pnas.0712328105. Epub 2008 Feb 21.

引用本文的文献

1
Bile acids in metabolic dysfunction-associated steatotic liver disease.
World J Hepatol. 2025 Aug 27;17(8):108606. doi: 10.4254/wjh.v17.i8.108606.
3
Microbiota-derived bile acid metabolic enzymes and their impacts on host health.
Cell Insight. 2025 Jul 12;4(5):100265. doi: 10.1016/j.cellin.2025.100265. eCollection 2025 Oct.
5
Evolving therapeutic landscape of primary biliary cholangitis: A review.
World J Hepatol. 2025 Jul 27;17(7):107223. doi: 10.4254/wjh.v17.i7.107223.
6
Age-Independent Hypocholesterolemic Effects of Rice Protein via FXR-Mediated Stimulation of Cholesterol Elimination.
Food Sci Nutr. 2025 Jul 28;13(8):e70687. doi: 10.1002/fsn3.70687. eCollection 2025 Aug.
7
Differential Protective Roles of c-Jun N-terminal Kinase-2 in Nonparenchymal Liver Cells and Hepatocytes During Cholestasis.
Cell Mol Gastroenterol Hepatol. 2025 Jul 16;19(11):101588. doi: 10.1016/j.jcmgh.2025.101588.
8
Microbiota in Gut-Heart Axis: Metabolites and Mechanisms in Cardiovascular Disease.
Compr Physiol. 2025 Jun;15(3):e70024. doi: 10.1002/cph4.70024.
10
LZys1 modulates gut microbiota, diminishes ileal FXR-FGF15 signaling, and regulates hepatic function.
Microbiol Spectr. 2025 Jun 3;13(6):e0171624. doi: 10.1128/spectrum.01716-24. Epub 2025 Apr 17.

本文引用的文献

3
Bile acids as regulatory molecules.
J Lipid Res. 2009 Aug;50(8):1509-20. doi: 10.1194/jlr.R900007-JLR200. Epub 2009 Apr 3.
4
Bile acids: regulation of synthesis.
J Lipid Res. 2009 Oct;50(10):1955-66. doi: 10.1194/jlr.R900010-JLR200. Epub 2009 Apr 3.
5
P4 ATPases - lipid flippases and their role in disease.
Biochim Biophys Acta. 2009 Jul;1791(7):628-35. doi: 10.1016/j.bbalip.2009.02.008. Epub 2009 Feb 27.
6
Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content.
J Biol Chem. 2009 Apr 10;284(15):9947-54. doi: 10.1074/jbc.M808667200. Epub 2009 Feb 19.
9
Role of bile acids and bile acid receptors in metabolic regulation.
Physiol Rev. 2009 Jan;89(1):147-91. doi: 10.1152/physrev.00010.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验