Fernandez-Funez Pedro, Casas-Tinto Sergio, Zhang Yan, Gómez-Velazquez Melisa, Morales-Garza Marco A, Cepeda-Nieto Ana C, Castilla Joaquín, Soto Claudio, Rincon-Limas Diego E
Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA.
PLoS Genet. 2009 Jun;5(6):e1000507. doi: 10.1371/journal.pgen.1000507. Epub 2009 Jun 5.
Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrP(C)) converts into a misfolded isoform (PrP(Sc)) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrP(C); in older flies, PrP misfolds, acquires biochemical and structural properties of PrP(Sc), and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrP(Sc)-specific conformational epitopes. In contrast to PrP(Sc) from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrP(Sc). Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrP(Sc)-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrP(Sc) is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover the potential therapeutic role of Hsp70 in treating these devastating disorders.
朊病毒疾病是无法治愈的神经退行性疾病,其中正常的细胞朊病毒蛋白(PrP(C))会转化为具有独特生化和结构特性且与疾病相关的错误折叠异构体(PrP(Sc))。在人类中,朊病毒疾病,如克雅氏病,通常呈散发性起源,即未知机制导致野生型PrP自发错误折叠和沉积。为了阐明野生型PrP如何发生构象变化以及哪些细胞成分参与了这一过程,我们分析了转基因果蝇中仓鼠野生型PrP的动力学。在年轻果蝇中,PrP表现出良性PrP(C)的特性;在年老果蝇中,PrP发生错误折叠,获得PrP(Sc)的生化和结构特性,并诱导脑神经元海绵状变性。年老果蝇会积累不溶性PrP,这种PrP能抵抗高浓度变性剂,并含有PrP(Sc)特异性构象表位。与哺乳动物的PrP(Sc)不同,果蝇中的PrP对蛋白酶敏感。因此,野生型PrP在体内迅速转化为一种与典型PrP(Sc)不同的神经毒性、蛋白酶敏感的异构体。接下来,我们研究了分子伴侣在体内PrP错误折叠中的作用。值得注意的是,热休克蛋白70(Hsp70)可防止PrP(Sc)样构象异构体的积累,并预防PrP依赖性神经退行性变。这种保护活性涉及Hsp70与PrP之间的直接相互作用,这种相互作用可能发生在活性膜微区,如脂筏中,我们在其中检测到了Hsp70。这些结果突出了野生型PrP在体内自发转化为具有神经毒性的蛋白酶敏感异构体的能力,支持了病理学不需要蛋白酶抗性PrP(Sc)的观点。此外,我们确定了Hsp70在错误折叠PrP积累中的新作用。总体而言,我们为神经毒性PrP的自发积累机制提供了新见解,并揭示了Hsp70在治疗这些毁灭性疾病中的潜在治疗作用。