Larochelle Andre, Choi Uimook, Shou Yan, Naumann Nora, Loktionova Natalia A, Clevenger Joshua R, Krouse Allen, Metzger Mark, Donahue Robert E, Kang Elizabeth, Stewart Clinton, Persons Derek, Malech Harry L, Dunbar Cynthia E, Sorrentino Brian P
National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
J Clin Invest. 2009 Jul;119(7):1952-63. doi: 10.1172/JCI37506. Epub 2009 Jun 8.
Major limitations to gene therapy using HSCs are low gene transfer efficiency and the inability of most therapeutic genes to confer a selective advantage on the gene-corrected cells. One approach to enrich for gene-modified cells in vivo is to include in the retroviral vector a drug resistance gene, such as the P140K mutant of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT*). We transplanted 5 rhesus macaques with CD34+ cells transduced with lentiviral vectors encoding MGMT* and a fluorescent marker, with or without homeobox B4 (HOXB4), a potent stem cell self-renewal gene. Transgene expression and common integration sites in lymphoid and myeloid lineages several months after transplantation confirmed transduction of long-term repopulating HSCs. However, all animals showed only a transient increase in gene-marked lymphoid and myeloid cells after O6-benzylguanine (BG) and temozolomide (TMZ) administration. In 1 animal, cells transduced with MGMT* lentiviral vectors were protected and expanded after multiple courses of BG/TMZ, providing a substantial increase in the maximum tolerated dose of TMZ. Additional cycles of chemotherapy using 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in similar increases in gene marking levels, but caused high levels of nonhematopoietic toxicity. Inclusion of HOXB4 in the MGMT* vectors resulted in no substantial increase in gene marking or HSC amplification after chemotherapy treatment. Our data therefore suggest that lentivirally mediated gene transfer in transplanted HSCs can provide in vivo chemoprotection of progenitor cells, although selection of long-term repopulating HSCs was not seen.
利用造血干细胞(HSCs)进行基因治疗的主要局限性在于基因转移效率低,以及大多数治疗性基因无法赋予基因校正细胞选择性优势。一种在体内富集基因修饰细胞的方法是在逆转录病毒载体中加入一个耐药基因,比如DNA修复酶O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT*)的P140K突变体。我们给5只恒河猴移植了用编码MGMT和荧光标记的慢病毒载体转导的CD34+细胞,这些载体有的含有同源盒B4(HOXB4)——一种有效的干细胞自我更新基因,有的则不含。移植数月后,对淋巴系和髓系谱系中的转基因表达及常见整合位点进行分析,证实了长期重建造血干细胞的转导情况。然而,所有动物在给予O6-苄基鸟嘌呤(BG)和替莫唑胺(TMZ)后,基因标记的淋巴系和髓系细胞仅出现短暂增加。在1只动物中,用MGMT慢病毒载体转导的细胞在多次BG/TMZ疗程后受到保护并得以扩增,使得TMZ的最大耐受剂量大幅增加。使用1,3-双(2-氯乙基)-1-亚硝基脲(BCNU)进行的额外化疗周期也使基因标记水平有类似增加,但导致了高水平的非造血毒性。在MGMT*载体中加入HOXB4后,化疗处理后基因标记或造血干细胞扩增并未显著增加。因此,我们的数据表明,慢病毒介导的基因转移到移植的造血干细胞中虽不能实现长期重建造血干细胞的选择,但可在体内为祖细胞提供化学保护。