Suppr超能文献

I(KS)钾通道亚基的细胞内结构域相互作用及门控运动

Intracellular domains interactions and gated motions of I(KS) potassium channel subunits.

作者信息

Haitin Yoni, Wiener Reuven, Shaham Dana, Peretz Asher, Cohen Enbal Ben-Tal, Shamgar Liora, Pongs Olaf, Hirsch Joel A, Attali Bernard

机构信息

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

EMBO J. 2009 Jul 22;28(14):1994-2005. doi: 10.1038/emboj.2009.157. Epub 2009 Jun 11.

Abstract

Voltage-gated K(+) channels co-assemble with auxiliary beta subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore-forming subunits with KCNE1 beta subunits generates the repolarizing K(+) current I(KS). However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life-threatening long or short QT syndromes. Here, we studied the interactions and voltage-dependent motions of I(KS) channel intracellular domains, using fluorescence resonance energy transfer combined with voltage-clamp recording and in vitro binding of purified proteins. The results indicate that the KCNE1 distal C-terminus interacts with the coiled-coil helix C of the Kv7.1 tetramerization domain. This association is important for I(KS) channel assembly rules as underscored by Kv7.1 current inhibition produced by a dominant-negative C-terminal domain. On channel opening, the C-termini of Kv7.1 and KCNE1 come close together. Co-expression of Kv7.1 with the KCNE1 long QT mutant D76N abolished the K(+) currents and gated motions. Thus, during channel gating KCNE1 is not static. Instead, the C-termini of both subunits experience molecular motions, which are disrupted by the D76N causing disease mutation.

摘要

电压门控钾离子通道与辅助β亚基共同组装形成大分子复合物。在心脏中,Kv7.1孔形成亚基与KCNE1β亚基的组装产生复极化钾离子电流I(KS)。然而,它们界面的详细性质仍然未知。Kv7.1或KCNE1中的突变会导致危及生命的长QT或短QT综合征。在这里,我们结合电压钳记录和纯化蛋白的体外结合,利用荧光共振能量转移研究了I(KS)通道细胞内结构域的相互作用和电压依赖性运动。结果表明,KCNE1远端C末端与Kv7.1四聚化结构域的卷曲螺旋C相互作用。这种关联对于I(KS)通道组装规则很重要,由显性负性C末端结构域产生的Kv7.1电流抑制所强调。在通道开放时,Kv7.1和KCNE1的C末端靠近在一起。Kv7.1与KCNE1长QT突变体D76N的共表达消除了钾离子电流和门控运动。因此,在通道门控期间,KCNE1不是静止的。相反,两个亚基的C末端都经历分子运动,这些运动被导致疾病的D76N突变破坏。

相似文献

1
Intracellular domains interactions and gated motions of I(KS) potassium channel subunits.
EMBO J. 2009 Jul 22;28(14):1994-2005. doi: 10.1038/emboj.2009.157. Epub 2009 Jun 11.
2
Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit.
Eur J Pharmacol. 2010 Jul 10;637(1-3):138-47. doi: 10.1016/j.ejphar.2010.04.001. Epub 2010 Apr 21.
4
Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP₂.
J Cell Sci. 2014 Sep 15;127(Pt 18):3943-55. doi: 10.1242/jcs.147033. Epub 2014 Jul 18.
5
KCNE1 remodels the voltage sensor of Kv7.1 to modulate channel function.
Biophys J. 2010 Dec 1;99(11):3599-608. doi: 10.1016/j.bpj.2010.10.018.
6
KCNE1 constrains the voltage sensor of Kv7.1 K+ channels.
PLoS One. 2008 Apr 9;3(4):e1943. doi: 10.1371/journal.pone.0001943.
7
Structural basis of slow activation gating in the cardiac I Ks channel complex.
Cell Physiol Biochem. 2011;27(5):443-52. doi: 10.1159/000329965. Epub 2011 Jun 15.
8
The Ion Channel Activator Mefenamic Acid Requires KCNE1 and Modulates Channel Gating in a Subunit-Dependent Manner.
Mol Pharmacol. 2020 Feb;97(2):132-144. doi: 10.1124/mol.119.117952. Epub 2019 Nov 13.
9
Physical and functional interaction sites in cytoplasmic domains of KCNQ1 and KCNE1 channel subunits.
Am J Physiol Heart Circ Physiol. 2020 Feb 1;318(2):H212-H222. doi: 10.1152/ajpheart.00459.2019. Epub 2019 Dec 13.
10
The unconventional biogenesis of Kv7.1-KCNE1 complexes.
Sci Adv. 2020 Apr 1;6(14):eaay4472. doi: 10.1126/sciadv.aay4472. eCollection 2020 Apr.

引用本文的文献

1
Predicting the Damaging Potential of Uncharacterized and Variants.
Int J Mol Sci. 2025 Jul 8;26(14):6561. doi: 10.3390/ijms26146561.
2
Arrhythmia-associated calmodulin variants interact with KCNQ1 to confer aberrant membrane trafficking and function.
PNAS Nexus. 2023 Oct 14;2(11):pgad335. doi: 10.1093/pnasnexus/pgad335. eCollection 2023 Nov.
3
Disruption of a Conservative Motif in the C-Terminal Loop of the KCNQ1 Channel Causes LQT Syndrome.
Int J Mol Sci. 2022 Jul 19;23(14):7953. doi: 10.3390/ijms23147953.
4
Human de novo mutations underlie epilepsy and intellectual disability.
J Neurophysiol. 2022 Jul 1;128(1):40-61. doi: 10.1152/jn.00509.2021. Epub 2022 May 18.
5
The unconventional biogenesis of Kv7.1-KCNE1 complexes.
Sci Adv. 2020 Apr 1;6(14):eaay4472. doi: 10.1126/sciadv.aay4472. eCollection 2020 Apr.
6
Physical and functional interaction sites in cytoplasmic domains of KCNQ1 and KCNE1 channel subunits.
Am J Physiol Heart Circ Physiol. 2020 Feb 1;318(2):H212-H222. doi: 10.1152/ajpheart.00459.2019. Epub 2019 Dec 13.
7
The I Channel Response to cAMP Is Modulated by the KCNE1:KCNQ1 Stoichiometry.
Biophys J. 2018 Nov 6;115(9):1731-1740. doi: 10.1016/j.bpj.2018.09.018. Epub 2018 Sep 27.
8
Single channel kinetic analysis of the cAMP effect on I mutants, S209F and S27D/S92D.
Channels (Austin). 2018;12(1):276-283. doi: 10.1080/19336950.2018.1499369.
9
A Calmodulin C-Lobe Ca-Dependent Switch Governs Kv7 Channel Function.
Neuron. 2018 Feb 21;97(4):836-852.e6. doi: 10.1016/j.neuron.2018.01.035. Epub 2018 Feb 8.
10
Ca-Calmodulin and PIP2 interactions at the proximal C-terminus of Kv7 channels.
Channels (Austin). 2017 Nov 2;11(6):686-695. doi: 10.1080/19336950.2017.1388478. Epub 2017 Nov 17.

本文引用的文献

1
Charge movement of a voltage-sensitive fluorescent protein.
Biophys J. 2009 Jan;96(2):L19-21. doi: 10.1016/j.bpj.2008.11.003.
2
Long QT syndrome and short QT syndrome.
Prog Cardiovasc Dis. 2008 Nov-Dec;51(3):264-78. doi: 10.1016/j.pcad.2008.10.006.
3
Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel.
Biochemistry. 2008 Aug 5;47(31):7999-8006. doi: 10.1021/bi800875q. Epub 2008 Jul 9.
5
KCNE1 constrains the voltage sensor of Kv7.1 K+ channels.
PLoS One. 2008 Apr 9;3(4):e1943. doi: 10.1371/journal.pone.0001943.
6
Counting membrane-embedded KCNE beta-subunits in functioning K+ channel complexes.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1478-82. doi: 10.1073/pnas.0710366105. Epub 2008 Jan 25.
7
The C-terminus of Kv7 channels: a multifunctional module.
J Physiol. 2008 Apr 1;586(7):1803-10. doi: 10.1113/jphysiol.2007.149187. Epub 2008 Jan 24.
8
Kv7.1 (KCNQ1) properties and channelopathies.
J Physiol. 2008 Apr 1;586(7):1785-9. doi: 10.1113/jphysiol.2007.148254. Epub 2008 Jan 3.
9
The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction.
J Biol Chem. 2008 Feb 29;283(9):5815-30. doi: 10.1074/jbc.M707541200. Epub 2007 Dec 29.
10
KCNE peptides differently affect voltage sensor equilibrium and equilibration rates in KCNQ1 K+ channels.
J Gen Physiol. 2008 Jan;131(1):59-68. doi: 10.1085/jgp.200709816. Epub 2007 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验