Rocheleau Jessica M, Kobertz William R
Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, MA 01605, USA.
J Gen Physiol. 2008 Jan;131(1):59-68. doi: 10.1085/jgp.200709816. Epub 2007 Dec 17.
KCNQ1 voltage-gated K(+) channels assemble with the family of KCNE type I transmembrane peptides to afford membrane-embedded complexes with diverse channel gating properties. KCNQ1/KCNE1 complexes generate the very slowly activating cardiac I(Ks) current, whereas assembly with KCNE3 produces a constitutively conducting complex involved in K(+) recycling in epithelia. To determine whether these two KCNE peptides influence voltage sensing in KCNQ1 channels, we monitored the position of the S4 voltage sensor in KCNQ1/KCNE complexes using cysteine accessibility experiments. A panel of KCNQ1 S4 cysteine mutants was expressed in Xenopus oocytes, treated with the membrane-impermeant cysteine-specific reagent 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and the voltage-dependent accessibility of each mutant was determined. Of these S4 cysteine mutants, three (R228C, G229C, I230C) were modified by MTSET only when KCNQ1 was depolarized. We then employed these state-dependent residues to determine how assembly with KCNE1 and KCNE3 affects KCNQ1 voltage sensor equilibrium and equilibration rates. In the presence of KCNE1, MTSET modification rates for the majority of the cysteine mutants were approximately 10-fold slower, as was recently reported to indicate that the kinetics of the KCNQ1 voltage sensor are slowed by KCNE1 (Nakajo, K., and Y. Kubo. 2007 J. Gen. Physiol. 130:269-281). Since MTS modification rates reflect an amalgam of reagent accessibility, chemical reactivity, and protein conformational changes, we varied the depolarization pulse duration to determine whether KCNE1 slows the equilibration rate of the voltage sensors. Using the state-dependent cysteine mutants, we determined that MTSET modification rates were essentially independent of depolarization pulse duration. These results demonstrate that upon depolarization the voltage sensors reach equilibrium quickly in the presence of KCNE1 and the slow gating of the channel complex is not due to slowly moving voltage sensors. In contrast, all cysteine substitutions in the S4 of KCNQ1/KCNE3 complexes were freely accessible to MTSET independent of voltage, which is consistent with KCNE3 shifting the voltage sensor equilibrium to favor the active state at hyperpolarizing potentials. In total, these results suggest that KCNE peptides differently modulate the voltage sensor in KCNQ1 K(+) channels.
KCNQ1电压门控钾离子通道与KCNE I型跨膜肽家族组装在一起,形成具有多种通道门控特性的膜嵌入复合物。KCNQ1/KCNE1复合物产生激活非常缓慢的心脏I(Ks)电流,而与KCNE3组装则产生一种组成型传导复合物,参与上皮细胞中的钾离子循环。为了确定这两种KCNE肽是否影响KCNQ1通道中的电压传感,我们使用半胱氨酸可及性实验监测了KCNQ1/KCNE复合物中S4电压传感器的位置。一组KCNQ1 S4半胱氨酸突变体在非洲爪蟾卵母细胞中表达,用膜不透性的半胱氨酸特异性试剂2-(三甲基铵)乙基甲硫代磺酸盐(MTSET)处理,然后测定每个突变体的电压依赖性可及性。在这些S4半胱氨酸突变体中,只有当KCNQ1去极化时,三个突变体(R228C、G229C、I230C)才会被MTSET修饰。然后我们利用这些状态依赖性残基来确定与KCNE-1和KCNE-3的组装如何影响KCNQ1电压传感器的平衡和平衡速率。在KCNE1存在的情况下,大多数半胱氨酸突变体的MTSET修饰速率大约慢10倍,正如最近报道的那样,这表明KCNE1减缓了KCNQ1电压传感器的动力学(中条,K.,以及Y·久保。2007年《普通生理学杂志》1(30):269 - 281)。由于MTS修饰速率反映了试剂可及性、化学反应性和蛋白质构象变化的综合情况,我们改变去极化脉冲持续时间,以确定KCNE1是否减缓了电压传感器的平衡速率。使用状态依赖性半胱氨酸突变体,我们确定MTSET修饰速率基本上与去极化脉冲持续时间无关。这些结果表明,在去极化时,电压传感器在KCNE1存在的情况下能迅速达到平衡,并且通道复合物的缓慢门控不是由于电压传感器移动缓慢所致。相比之下,KCNQ1/KCNE3复合物S4中的所有半胱氨酸取代对MTSET都是自由可及的且与电压无关,这与KCNE3将电压传感器平衡向超极化电位下的活性状态偏移是一致的。总的来说,这些结果表明KCNE肽对KCNQ1钾离子通道中的电压传感器有不同的调节作用。