Suppr超能文献

I 通道对 cAMP 的反应受 KCNE1:KCNQ1 计量比的调节。

The I Channel Response to cAMP Is Modulated by the KCNE1:KCNQ1 Stoichiometry.

机构信息

Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.

Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Biophys J. 2018 Nov 6;115(9):1731-1740. doi: 10.1016/j.bpj.2018.09.018. Epub 2018 Sep 27.

Abstract

The delayed potassium rectifier current, I is assembled from tetramers of KCNQ1 and varying numbers of KCNE1 accessory subunits in addition to calmodulin. This channel complex is important in the response of the cardiac action potential to sympathetic stimulation, during which I is enhanced. This is likely due to channels opening more quickly, more often, and to greater sublevel amplitudes during adrenergic stimulation. KCNQ1 alone is unresponsive to cyclic adenosine monophosphate (cAMP), and thus KCNE1 is required for a functional effect of protein kinase A phosphorylation. Here, we investigate the effect that KCNE1 has on the response to 8-4-chlorophenylthio (CPT)-cAMP, a membrane-permeable cAMP analog, by varying the number of KCNE1 subunits present using fusion constructs of I with either one (EQQQQ) or two (EQQ) KCNE1 subunits in the channel complex with KCNQ1. These experiments use both whole-cell and single-channel recording techniques. EQQ (2:4, E1:Q1) shows a significant shift in V of activation from 10.4 mV ± 2.2 in control to -2.7 mV ± 1.2 (p-value: 0.0024). EQQQQ (1:4, E1:Q1) shows a smaller change in response to 8-CPT-cAMP, 6.3 mV ± 2.3 to -3.2 mV ± 3.0 (p-value: 0.0435). As the number of KCNE1 subunits is reduced, the shift in the V of activation becomes smaller. At the single-channel level, a similar graded change in subconductance occupancy and channel activity is seen in response to 8-CPT-cAMP: the less E1, the smaller the response. However, both constructs show a significant reduction of a similar magnitude in the first latency to opening (EQQ control: 0.90 s ± 0.07 to 0.71 s ± 0.06, p-value: 0.0032 and EQQQQ control: 0.94 s ± 0.09 to 0.56 s ± 0.07, p-value < 0.0001). This suggests that there are both E1-dependent and E1-independent effects of 8-CPT-cAMP on the channel.

摘要

延迟钾整流电流 I 由 KCNQ1 四聚体和不同数量的 KCNE1 辅助亚基以及钙调蛋白组装而成。这种通道复合物对于心脏动作电位对交感刺激的反应很重要,在此期间 I 增强。这可能是由于通道在肾上腺素刺激下更快、更频繁地打开,并且亚基幅度更大。单独的 KCNQ1 对环磷酸腺苷 (cAMP) 无反应,因此 KCNE1 是蛋白激酶 A 磷酸化产生功能效应所必需的。在这里,我们通过在通道复合物中使用 KCNQ1 与一个(EQQQQ)或两个(EQQ)KCNE1 亚基的融合构建体来改变存在的 KCNE1 亚基数量,研究 KCNE1 对 8-4-氯苯基硫代(CPT)-cAMP 的反应的影响,CPT-cAMP 是一种膜通透的 cAMP 类似物。这些实验使用全细胞和单通道记录技术。EQQ(2:4,E1:Q1)显示激活 V 的显著变化,从对照中的 10.4 mV ± 2.2 变为-2.7 mV ± 1.2(p 值:0.0024)。EQQQQ(1:4,E1:Q1)对 8-CPT-cAMP 的反应变化较小,从 6.3 mV ± 2.3 变为-3.2 mV ± 3.0(p 值:0.0435)。随着 KCNE1 亚基数量的减少,激活 V 的变化变得更小。在单通道水平上,对 8-CPT-cAMP 的反应也观察到亚电导占有率和通道活性的类似分级变化:E1 越少,反应越小。然而,两种构建体都显示出类似幅度的第一开放潜伏期的显著减少(EQQ 对照:0.90 s ± 0.07 至 0.71 s ± 0.06,p 值:0.0032 和 EQQQQ 对照:0.94 s ± 0.09 至 0.56 s ± 0.07,p 值 <0.0001)。这表明 8-CPT-cAMP 对通道既有 E1 依赖性又有 E1 非依赖性的影响。

相似文献

1
The I Channel Response to cAMP Is Modulated by the KCNE1:KCNQ1 Stoichiometry.
Biophys J. 2018 Nov 6;115(9):1731-1740. doi: 10.1016/j.bpj.2018.09.018. Epub 2018 Sep 27.
3
cAMP-dependent regulation of single-channel kinetics.
J Gen Physiol. 2017 Aug 7;149(8):781-798. doi: 10.1085/jgp.201611734. Epub 2017 Jul 7.
4
KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel.
Channels (Austin). 2009 Jan-Feb;3(1):16-24. doi: 10.4161/chan.3.1.7387. Epub 2009 Jan 7.
5
BACE1 modulates gating of KCNQ1 (Kv7.1) and cardiac delayed rectifier KCNQ1/KCNE1 (IKs).
J Mol Cell Cardiol. 2015 Dec;89(Pt B):335-48. doi: 10.1016/j.yjmcc.2015.10.006. Epub 2015 Oct 8.
7
The Ion Channel Activator Mefenamic Acid Requires KCNE1 and Modulates Channel Gating in a Subunit-Dependent Manner.
Mol Pharmacol. 2020 Feb;97(2):132-144. doi: 10.1124/mol.119.117952. Epub 2019 Nov 13.
9
Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation.
Int J Mol Sci. 2020 Dec 11;21(24):9440. doi: 10.3390/ijms21249440.
10
Adult Ventricular Myocytes Segregate KCNQ1 and KCNE1 to Keep the Amplitude in Check Until When Larger Is Needed.
Circ Arrhythm Electrophysiol. 2017 Jun;10(6). doi: 10.1161/CIRCEP.117.005084.

引用本文的文献

1
The fully activated open state of KCNQ1 controls the cardiac "fight-or-flight" response.
PNAS Nexus. 2024 Oct 9;3(10):pgae452. doi: 10.1093/pnasnexus/pgae452. eCollection 2024 Oct.
2
Targeting the I Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants.
Circ Res. 2024 Sep 13;135(7):722-738. doi: 10.1161/CIRCRESAHA.124.325009. Epub 2024 Aug 21.
3
Pharmacological rescue of specific long QT variants of KCNQ1/KCNE1 channels.
Front Physiol. 2022 Nov 23;13:902224. doi: 10.3389/fphys.2022.902224. eCollection 2022.
4
Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes.
Front Physiol. 2020 Jun 4;11:504. doi: 10.3389/fphys.2020.00504. eCollection 2020.
5
Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex.
Cells. 2020 May 2;9(5):1128. doi: 10.3390/cells9051128.

本文引用的文献

1
cAMP-dependent regulation of single-channel kinetics.
J Gen Physiol. 2017 Aug 7;149(8):781-798. doi: 10.1085/jgp.201611734. Epub 2017 Jul 7.
3
Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels.
Biophys J. 2016 Jan 5;110(1):14-25. doi: 10.1016/j.bpj.2015.11.023.
4
The KCNQ1 channel - remarkable flexibility in gating allows for functional versatility.
J Physiol. 2015 Jun 15;593(12):2605-15. doi: 10.1113/jphysiol.2014.287607. Epub 2015 Mar 18.
6
Microscopic mechanisms for long QT syndrome type 1 revealed by single-channel analysis of I(Ks) with S3 domain mutations in KCNQ1.
Heart Rhythm. 2015 Feb;12(2):386-94. doi: 10.1016/j.hrthm.2014.10.029. Epub 2014 Oct 29.
7
Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP₂.
J Cell Sci. 2014 Sep 15;127(Pt 18):3943-55. doi: 10.1242/jcs.147033. Epub 2014 Jul 18.
8
Individual IKs channels at the surface of mammalian cells contain two KCNE1 accessory subunits.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):E1438-46. doi: 10.1073/pnas.1323548111. Epub 2014 Mar 3.
9
In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling.
Sci Signal. 2013 Jun 4;6(278):rs11. doi: 10.1126/scisignal.2003506.
10
Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8732-7. doi: 10.1073/pnas.1300684110. Epub 2013 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验