Suppr超能文献

比较从系谱信息与遗传信息推断出的种群结构。

Comparing population structure as inferred from genealogical versus genetic information.

机构信息

Dipartimento di Biologia ed Evoluzione, Università di Ferrara, Ferrara, Italy.

出版信息

Eur J Hum Genet. 2009 Dec;17(12):1635-41. doi: 10.1038/ejhg.2009.97. Epub 2009 Jun 24.

Abstract

Algorithms for inferring population structure from genetic data (ie, population assignment methods) have shown to effectively recognize genetic clusters in human populations. However, their performance in identifying groups of genealogically related individuals, especially in scanty-differentiated populations, has not been tested empirically thus far. For this study, we had access to both genealogical and genetic data from two closely related, isolated villages in southern Italy. We found that nearly all living individuals were included in a single pedigree, with multiple inbreeding loops. Despite F(st) between villages being a low 0.008, genetic clustering analysis identified two clusters roughly corresponding to the two villages. Average kinship between individuals (estimated from genealogies) increased at increasing values of group membership (estimated from the genetic data), showing that the observed genetic clusters represent individuals who are more closely related to each other than to random members of the population. Further, average kinship within clusters and F(st) between clusters increases with increasingly stringent membership threshold requirements. We conclude that a limited number of genetic markers is sufficient to detect structuring, and that the results of genetic analyses faithfully mirror the structuring inferred from detailed analyses of population genealogies, even when F(st) values are low, as in the case of the two villages. We then estimate the impact of observed levels of population structure on association studies using simulated data.

摘要

从遗传数据推断群体结构的算法(即群体分配方法)已被证明能够有效地识别人类群体中的遗传聚类。然而,迄今为止,它们在识别具有谱系关系的个体群体方面的性能,特别是在分化程度较低的群体中,尚未经过实证检验。在这项研究中,我们获得了来自意大利南部两个密切相关、与世隔绝的村庄的遗传和谱系数据。我们发现,几乎所有的在世个体都包含在一个单一的系谱中,存在多个近亲繁殖循环。尽管村庄之间的 F(st) 低至 0.008,但遗传聚类分析确定了两个大致对应于两个村庄的聚类。个体之间的平均亲缘关系(根据系谱估计)随着群体成员身份(根据遗传数据估计)的增加而增加,这表明观察到的遗传聚类代表了彼此之间比随机群体成员更密切相关的个体。此外,聚类内的平均亲缘关系和聚类之间的 F(st) 随着成员资格阈值要求的严格程度增加而增加。我们得出结论,有限数量的遗传标记足以检测结构,并且遗传分析的结果忠实地反映了从对群体谱系的详细分析推断出的结构,即使在 F(st) 值较低的情况下,如在两个村庄的情况下也是如此。然后,我们使用模拟数据估计观察到的群体结构水平对关联研究的影响。

相似文献

2
Browsing isolated population data.浏览孤立种群数据。
BMC Bioinformatics. 2005 Dec 1;6 Suppl 4(Suppl 4):S17. doi: 10.1186/1471-2105-6-S4-S17.

引用本文的文献

5
Inter-individual genomic heterogeneity within European population isolates.欧洲人群隔离个体间的基因组异质性。
PLoS One. 2019 Oct 9;14(10):e0214564. doi: 10.1371/journal.pone.0214564. eCollection 2019.

本文引用的文献

2
Isolated populations and complex disease gene identification.孤立群体与复杂疾病基因鉴定。
Genome Biol. 2008;9(8):109. doi: 10.1186/gb-2008-9-8-109. Epub 2008 Aug 26.
3
Genes mirror geography within Europe.基因反映了欧洲内部的地理特征。
Nature. 2008 Nov 6;456(7218):98-101. doi: 10.1038/nature07331. Epub 2008 Aug 31.
4
Correlation between genetic and geographic structure in Europe.欧洲基因结构与地理结构之间的相关性。
Curr Biol. 2008 Aug 26;18(16):1241-8. doi: 10.1016/j.cub.2008.07.049. Epub 2008 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验