Eccleston Jennifer, Schrader Carol E, Yuan Karen, Stavnezer Janet, Selsing Erik
Immunology Program and Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA.
J Immunol. 2009 Jul 15;183(2):1222-8. doi: 10.4049/jimmunol.0900135. Epub 2009 Jun 24.
The Msh2 mismatch repair (MMR) protein is critical for class switch recombination (CSR) events that occur in mice that lack the Smu tandem repeat (SmuTR) region (SmuTR(-/-) mice). The pattern of microhomology among switch junction sites in Msh2-deficient mice is also dependent on the presence or absence of SmuTR sequences. It is not known whether these CSR effects reflect an individual function of Msh2 or the function of Msh2 within the MMR machinery. In the absence of the SmuTR sequences, Msh2 deficiency nearly ablates CSR. We now show that Mlh1 or Exo1 deficiencies also eliminate CSR in the absence of the SmuTR. Furthermore, in SmuTR(-/-) mice, deficiencies of Mlh1 or Exo1 result in increased switch junction microhomology as has also been seen with Msh2 deficiency. These results are consistent with a CSR model in which the MMR machinery is important in processing DNA nicks to produce double-stranded breaks, particularly in sequences where nicks are infrequent. We propose that double-stranded break paucity in MMR-deficient mice leads to increased use of an alternative joining pathway where microhomologies are important for CSR break ligation. Interestingly, when the SmuTR region is present, deficiency of Msh2 does not lead to the increased microhomology seen with Mlh1 or Exo1 deficiencies, suggesting that Msh2 might have an additional function in CSR. It is also possible that the inability to initiate MMR in the absence of Msh2 results in CSR junctions with less microhomology than joinings that occur when MMR is initiated but then proceeds abnormally due to Mlh1 or Exo1 deficiencies.
Msh2错配修复(MMR)蛋白对于在缺乏Smu串联重复序列(SmuTR)区域的小鼠(SmuTR(-/-)小鼠)中发生的类别转换重组(CSR)事件至关重要。Msh2缺陷小鼠中转换连接位点之间的微同源性模式也取决于SmuTR序列的有无。尚不清楚这些CSR效应是反映Msh2的个体功能还是MMR机制中Msh2的功能。在没有SmuTR序列的情况下,Msh2缺陷几乎消除了CSR。我们现在表明,在没有SmuTR的情况下,Mlh1或Exo1缺陷也会消除CSR。此外,在SmuTR(-/-)小鼠中,Mlh1或Exo1缺陷会导致转换连接微同源性增加,这在Msh2缺陷中也已观察到。这些结果与一种CSR模型一致,即MMR机制在处理DNA切口以产生双链断裂方面很重要,特别是在切口不常见的序列中。我们提出,MMR缺陷小鼠中双链断裂的缺乏导致对替代连接途径的使用增加,其中微同源性对于CSR断裂连接很重要。有趣的是,当存在SmuTR区域时,Msh2缺陷不会导致如Mlh1或Exo1缺陷所见的微同源性增加,这表明Msh2可能在CSR中具有额外的功能。也有可能在没有Msh2的情况下无法启动MMR导致CSR连接的微同源性低于当MMR启动但随后由于Mlh1或Exo1缺陷而异常进行时发生的连接。