Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
J Exp Med. 2012 Apr 9;209(4):671-8. doi: 10.1084/jem.20111531. Epub 2012 Mar 26.
Antibody diversification through somatic hypermutation (SHM) and class switch recombination (CSR) are similarly initiated in B cells with the generation of U:G mismatches by activation-induced cytidine deaminase but differ in their subsequent mutagenic consequences. Although SHM relies on the generation of nondeleterious point mutations, CSR depends on the production of DNA double-strand breaks (DSBs) and their adequate recombination through nonhomologous end joining (NHEJ). MLH1, an ATPase member of the mismatch repair (MMR) machinery, is emerging as a likely regulator of whether a U:G mismatch progresses toward mutation or DSB formation. We conducted experiments on cancer modeled ATPase-deficient MLH1G67R knockin mice to determine the function that the ATPase domain of MLH1 mediates in SHM and CSR. Mlh1(GR/GR) mice displayed a significant decrease in CSR, mainly attributed to a reduction in the generation of DSBs and diminished accumulation of 53BP1 at the immunoglobulin switch regions. However, SHM was normal in these mice, which distinguishes MLH1 from upstream members of the MMR pathway and suggests a very specific role of its ATPase-dependent functions during CSR. In addition, we show that the residual switching events still taking place in Mlh1(GR/GR) mice display unique features, suggesting a role for the ATPase activity of MLH1 beyond the activation of the endonuclease functions of its MMR partner PMS2. A preference for switch junctions with longer microhomologies in Mlh1(GR/GR) mice suggests that through its ATPase activity, MLH1 also has an impact in DNA end processing, favoring canonical NHEJ downstream of the DSB. Collectively, our study shows that the ATPase domain of MLH1 is important to transmit the CSR signaling cascade both upstream and downstream of the generation of DSBs.
抗体多样性通过体细胞超突变(SHM)和类别转换重组(CSR)在 B 细胞中类似地启动,通过激活诱导的胞嘧啶脱氨酶产生 U:G 错配,但随后的突变后果不同。虽然 SHM 依赖于非破坏性点突变的产生,但 CSR 依赖于 DNA 双链断裂(DSB)的产生及其通过非同源末端连接(NHEJ)的适当重组。MLH1 是错配修复(MMR)机制中的 ATP 酶成员,它作为 U:G 错配是否朝着突变或 DSB 形成方向发展的可能调节剂而出现。我们在癌症模型 ATPase 缺陷 MLH1G67R 敲入小鼠中进行了实验,以确定 MLH1 的 ATP 酶结构域在 SHM 和 CSR 中介导的功能。Mlh1(GR/GR) 小鼠的 CSR 显著减少,主要归因于 DSB 的产生减少和免疫球蛋白转换区 53BP1 的积累减少。然而,这些小鼠的 SHM 正常,这将 MLH1 与 MMR 途径的上游成员区分开来,并表明其 ATP 酶依赖性功能在 CSR 中具有非常特定的作用。此外,我们表明,仍在 Mlh1(GR/GR) 小鼠中发生的残留转换事件具有独特的特征,这表明 MLH1 的 ATP 酶活性在其 MMR 伙伴 PMS2 的内切酶功能激活之外具有作用。Mlh1(GR/GR) 小鼠中更长微同源性的开关连接偏好表明,通过其 ATP 酶活性,MLH1 还对 DNA 末端处理有影响,有利于 DSB 下游的经典 NHEJ。总的来说,我们的研究表明,MLH1 的 ATP 酶结构域对于在 DSB 产生的上游和下游传递 CSR 信号级联都很重要。