在相邻U/G错配处理过程中,错配修复和碱基切除修复的干扰可能在体细胞高频突变中起关键作用。
Interference of mismatch and base excision repair during the processing of adjacent U/G mispairs may play a key role in somatic hypermutation.
作者信息
Schanz Silvia, Castor Dennis, Fischer Franziska, Jiricny Josef
机构信息
Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
出版信息
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5593-8. doi: 10.1073/pnas.0901726106. Epub 2009 Mar 23.
In eukaryotic mismatch repair (MMR), degradation of the error-containing strand initiates at nicks or gaps that can be up to a kilobase away from the mispair. These discontinuities may be the ends of Okazaki fragments or the 3'-termini of the leading strands during replication, whereas the termini of invading strands may fulfill this role during recombination. Here we show that, in extracts of human cells, MMR can initiate also at sites of ongoing base excision repair. Although unlikely under normal circumstances, this situation may arise in vivo during somatic hypermutation (SHM) and class switch recombination of Ig genes, where activation-induced cytidine deaminase (AID) generates multiple U/G mismatches in the variable or switch regions. Uracil should normally be excised by base excision repair (BER), but we show here that MMR proteins activated by a nearby mismatch interfere with uracil processing to generate long single-stranded gaps. We postulate that, in a subset of the repair events, filling-in of the MMR-generated gaps might be catalyzed by the error-prone polymerase-eta, rather than by the high-fidelity polymerase-delta. Because polymerase-eta has a propensity to misinsertions opposite adenine residues, the above mechanism would help explain why SHM affects not only C/G, but also A/T base pairs.
在真核生物错配修复(MMR)中,含错误链的降解起始于切口或缺口,这些切口或缺口距离错配位点可达1千碱基。这些不连续处可能是复制过程中冈崎片段的末端或前导链的3'-末端,而在重组过程中,侵入链的末端可能起到这种作用。在这里,我们表明,在人类细胞提取物中,MMR也可以在正在进行碱基切除修复的位点起始。虽然在正常情况下不太可能,但这种情况可能在体内体细胞高频突变(SHM)和Ig基因的类别转换重组过程中出现,其中激活诱导的胞苷脱氨酶(AID)在可变区或转换区产生多个U/G错配。尿嘧啶通常应由碱基切除修复(BER)切除,但我们在此表明,由附近错配激活的MMR蛋白会干扰尿嘧啶的处理,从而产生长的单链缺口。我们推测,在一部分修复事件中,MMR产生的缺口的填补可能由易出错的聚合酶η催化,而不是由高保真聚合酶δ催化。由于聚合酶η倾向于在与腺嘌呤残基相对的位置发生错插入,上述机制将有助于解释为什么SHM不仅影响C/G,还影响A/T碱基对。