Suppr超能文献

依赖NADH的谷氨酸合酶在拟南芥根中铵同化过程中起关键作用。

NADH-dependent glutamate synthase plays a crucial role in assimilating ammonium in the Arabidopsis root.

作者信息

Konishi Noriyuki, Ishiyama Keiki, Matsuoka Kaya, Maru Ikumi, Hayakawa Toshihiko, Yamaya Tomoyuki, Kojima Soichi

机构信息

Graduate School of Agricultural Science, Tohoku University, Sendai, 9818555, Japan.

出版信息

Physiol Plant. 2014 Sep;152(1):138-51. doi: 10.1111/ppl.12177. Epub 2014 Apr 2.

Abstract

Plant roots under nitrogen deficient conditions with access to both ammonium and nitrate ions, will take up ammonium first. This preference for ammonium rather than nitrate emphasizes the importance of ammonium assimilation machinery in roots. Glutamine synthetase (GS) and glutamate synthase (GOGAT) catalyze the conversion of ammonium and 2-oxoglutarate to glutamine and glutamate. Higher plants have two GOGAT species, ferredoxin-dependent glutamate synthase (Fd-GOGAT) and nicotinamide adenine dinucleotide (NADH)-GOGAT. While Fd-GOGAT participates in the assimilation of ammonium, which is derived from photorespiration in leaves, NADH-GOGAT is highly expressed in roots and its importance needs to be elucidated. While ammonium as a minor nitrogen form in most soils is directly taken up, nitrate as the major nitrogen source needs to be converted to ammonium prior to uptake. The aim of this study was to investigate and quantify the contribution of NADH-GOGAT to the ammonium assimilation in Arabidopsis (Arabidopsis thaliana Columbia) roots. Quantitative real-time polymerase chain reaction (PCR) and protein gel blot analysis showed an accumulation of NADH-GOGAT in response to ammonium supplied to the roots. In addition the localization of NADH-GOGAT and Fd-GOGAT did not fully overlap. Promoter-β-glucuronidase (GUS) fusion analysis and immunohistochemistry showed that NADH-GOGAT was highly accumulated in non-green tissue like vascular bundles, shoot apical meristem, pollen, stigma and roots. Reverse genetic approaches suggested a reduction in glutamate production and biomass accumulation in NADH-GOGAT transfer DNA (T-DNA) insertion lines under normal CO2 condition. The data emphasize the importance of NADH-GOGAT in the ammonium assimilation in Arabidopsis roots.

摘要

在氮素缺乏条件下,植物根系若同时接触铵离子和硝酸根离子,会优先吸收铵离子。这种对铵离子而非硝酸根离子的偏好,凸显了根系中铵同化机制的重要性。谷氨酰胺合成酶(GS)和谷氨酸合酶(GOGAT)催化铵离子和2-酮戊二酸转化为谷氨酰胺和谷氨酸。高等植物有两种GOGAT,即铁氧还蛋白依赖性谷氨酸合酶(Fd-GOGAT)和烟酰胺腺嘌呤二核苷酸(NADH)-GOGAT。Fd-GOGAT参与叶片光呼吸产生的铵离子的同化过程,而NADH-GOGAT在根系中高表达,其重要性有待阐明。虽然在大多数土壤中,铵作为次要氮素形态可直接被吸收,但作为主要氮源的硝酸根在被吸收之前需要先转化为铵离子。本研究的目的是调查和量化NADH-GOGAT对拟南芥(Arabidopsis thaliana Columbia)根系铵同化的贡献。定量实时聚合酶链反应(PCR)和蛋白质凝胶印迹分析表明,向根系供应铵离子会导致NADH-GOGAT积累。此外,NADH-GOGAT和Fd-GOGAT的定位并不完全重叠。启动子-β-葡萄糖醛酸酶(GUS)融合分析和免疫组织化学显示,NADH-GOGAT在维管束、茎尖分生组织、花粉、柱头和根系等非绿色组织中高度积累。反向遗传学方法表明,在正常二氧化碳条件下,NADH-GOGAT转移DNA(T-DNA)插入系中的谷氨酸生成和生物量积累减少。这些数据强调了NADH-GOGAT在拟南芥根系铵同化中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验