Suppr超能文献

颈总动脉 CT 血管造影中外壁的分割。

Segmentation of the outer vessel wall of the common carotid artery in CTA.

机构信息

Biomedical Imaging Group Rotterdam, Department of Radiology, Erasmus MC, 3015GE Rotterdam, The Netherlands.

出版信息

IEEE Trans Med Imaging. 2010 Jan;29(1):65-76. doi: 10.1109/TMI.2009.2025702. Epub 2009 Jun 23.

Abstract

A novel method is presented for carotid artery vessel wall segmentation in computed tomography angiography (CTA) data. First the carotid lumen is semi-automatically segmented using a level set approach initialized with three seed points. Subsequently, calcium regions located within the vessel wall are automatically detected and classified using multiple features in a GentleBoost framework. Calcium regions segmentation is used to improve localization of the outer vessel wall because it is an easier task than direct outer vessel wall segmentation. In a third step, pixels outside the lumen area are classified as vessel wall or background, using the same GentleBoost framework with a different set of image features. Finally, a 2-D ellipse shape deformable model is fitted to a cost image derived from both the calcium and vessel wall classifications. The method has been validated on a dataset of 60 CTA images. The experimental results show that the accuracy of the method is comparable to the interobserver variability.

摘要

提出了一种新的方法,用于在计算机断层血管造影术 (CTA) 数据中进行颈动脉血管壁分割。首先,使用水平集方法,通过三个种子点初始化,半自动地分割颈动脉管腔。随后,使用 GentleBoost 框架中的多个特征自动检测和分类位于血管壁内的钙区域。钙区域的分割用于改善外血管壁的定位,因为它比直接外血管壁分割更容易。在第三步中,使用与不同图像特征集的相同 GentleBoost 框架,将管腔区域外的像素分类为血管壁或背景。最后,将一个 2D 椭圆形状变形模型拟合到源自钙和血管壁分类的代价图像。该方法已在 60 个 CTA 图像数据集上进行了验证。实验结果表明,该方法的准确性与观察者间的变异性相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验