Ottakath Najmath, Al-Maadeed Somaya, Zughaier Susu M, Elharrouss Omar, Mohammed Hanadi Hassen, Chowdhury Muhammad E H, Bouridane Ahmed
Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar.
College of Medicine, Qatar University, Doha 2713, Qatar.
Diagnostics (Basel). 2023 Aug 7;13(15):2614. doi: 10.3390/diagnostics13152614.
The carotid artery is a major blood vessel that supplies blood to the brain. Plaque buildup in the arteries can lead to cardiovascular diseases such as atherosclerosis, stroke, ruptured arteries, and even death. Both invasive and non-invasive methods are used to detect plaque buildup in the arteries, with ultrasound imaging being the first line of diagnosis. This paper presents a comprehensive review of the existing literature on ultrasound image analysis methods for detecting and characterizing plaque buildup in the carotid artery. The review includes an in-depth analysis of datasets; image segmentation techniques for the carotid artery plaque area, lumen area, and intima-media thickness (IMT); and plaque measurement, characterization, classification, and stenosis grading using deep learning and machine learning. Additionally, the paper provides an overview of the performance of these methods, including challenges in analysis, and future directions for research.
颈动脉是向大脑供血的主要血管。动脉中斑块的形成会导致心血管疾病,如动脉粥样硬化、中风、动脉破裂,甚至死亡。检测动脉中斑块形成的方法有有创和无创两种,超声成像为一线诊断方法。本文对现有的关于颈动脉斑块形成检测及特征描述的超声图像分析方法的文献进行了全面综述。该综述包括对数据集的深入分析;用于颈动脉斑块区域、管腔面积和内膜中层厚度(IMT)的图像分割技术;以及使用深度学习和机器学习进行的斑块测量、特征描述、分类和狭窄分级。此外,本文还概述了这些方法的性能,包括分析中的挑战以及未来的研究方向。