Suppr超能文献

使用轨迹细化和极坐标转换的自动动脉定位与血管壁分割

Automated Artery Localization and Vessel Wall Segmentation using Tracklet Refinement and Polar Conversion.

作者信息

Chen Li, Sun Jie, Canton Gador, Balu Niranjan, Hippe Daniel S, Zhao Xihai, Li Rui, Hatsukami Thomas S, Hwang Jenq-Neng, Yuan Chun

机构信息

Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.

Department of Radiology, University of Washington, Seattle, WA, 98195, USA.

出版信息

IEEE Access. 2020;8:217603-217614. doi: 10.1109/access.2020.3040616. Epub 2020 Nov 25.

Abstract

Quantitative analysis of blood vessel wall structures is important to study atherosclerotic diseases and assess cardiovascular event risks. To achieve this, accurate identification of vessel luminal and outer wall contours is needed. Computer-assisted tools exist, but manual preprocessing steps, such as region of interest identification and/or boundary initialization, are still needed. In addition, prior knowledge of the ring shape of vessel walls has not been fully explored in designing segmentation methods. In this work, a fully automated artery localization and vessel wall segmentation system is proposed. A tracklet refinement algorithm was adapted to robustly identify the artery of interest from a neural network-based artery centerline identification architecture. Image patches were extracted from the centerlines and converted in a polar coordinate system for vessel wall segmentation. The segmentation method used 3D polar information and overcame problems such as contour discontinuity, complex vessel geometry, and interference from neighboring vessels. Verified by a large (>32000 images) carotid artery dataset collected from multiple sites, the proposed system was shown to better automatically segment the vessel wall than traditional vessel wall segmentation methods or standard convolutional neural network approaches. In addition, a segmentation uncertainty score was estimated to effectively identify slices likely to have errors and prompt manual confirmation of the segmentation. This robust vessel wall segmentation system has applications in different vascular beds and will facilitate vessel wall feature extraction and cardiovascular risk assessment.

摘要

血管壁结构的定量分析对于研究动脉粥样硬化疾病和评估心血管事件风险至关重要。要做到这一点,需要准确识别血管腔和外壁轮廓。虽然存在计算机辅助工具,但仍需要手动预处理步骤,如感兴趣区域识别和/或边界初始化。此外,在设计分割方法时,尚未充分探索血管壁环形形状的先验知识。在这项工作中,提出了一种全自动动脉定位和血管壁分割系统。采用了一种轨迹细化算法,从基于神经网络的动脉中心线识别架构中稳健地识别感兴趣的动脉。从中心线提取图像块并转换到极坐标系中进行血管壁分割。该分割方法使用三维极坐标信息,克服了轮廓不连续、血管几何形状复杂以及相邻血管干扰等问题。通过从多个地点收集的大型(>32000张图像)颈动脉数据集进行验证,结果表明,与传统的血管壁分割方法或标准卷积神经网络方法相比,所提出的系统能够更好地自动分割血管壁。此外,还估计了分割不确定性分数,以有效识别可能存在错误的切片并促使人工确认分割。这种稳健的血管壁分割系统在不同血管床中有应用,并将有助于血管壁特征提取和心血管风险评估。

相似文献

1
Automated Artery Localization and Vessel Wall Segmentation using Tracklet Refinement and Polar Conversion.
IEEE Access. 2020;8:217603-217614. doi: 10.1109/access.2020.3040616. Epub 2020 Nov 25.
6
Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA.
IEEE Trans Med Imaging. 2011 Nov;30(11):1974-86. doi: 10.1109/TMI.2011.2160556. Epub 2011 Jun 23.
7
Automated morphologic analysis of intracranial and extracranial arteries using convolutional neural networks.
Br J Radiol. 2022 Oct;95(1139):20210031. doi: 10.1259/bjr.20210031. Epub 2022 Oct 5.
9
3D carotid artery segmentation using shape-constrained active contours.
Comput Biol Med. 2023 Feb;153:106530. doi: 10.1016/j.compbiomed.2022.106530. Epub 2023 Jan 2.

引用本文的文献

4
Learning carotid vessel wall segmentation in black-blood MRI using sparsely sampled cross-sections from 3D data.
J Med Imaging (Bellingham). 2024 Jul;11(4):044503. doi: 10.1117/1.JMI.11.4.044503. Epub 2024 Jul 12.
6
Deep Learning-Based Automated Detection of Arterial Vessel Wall and Plaque on Magnetic Resonance Vessel Wall Images.
Front Neurosci. 2022 Jun 1;16:888814. doi: 10.3389/fnins.2022.888814. eCollection 2022.
7
Discrete mission planning algorithm for air-sea integrated search model.
Sci Rep. 2021 Aug 20;11(1):16957. doi: 10.1038/s41598-021-95477-7.
8
INTRACRANIAL VESSEL WALL SEGMENTATION FOR ATHEROSCLEROTIC PLAQUE QUANTIFICATION.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:1416-1419. doi: 10.1109/ISBI48211.2021.9434018. Epub 2021 May 25.

本文引用的文献

1
PolarMask++: Enhanced Polar Representation for Single-Shot Instance Segmentation and Beyond.
IEEE Trans Pattern Anal Mach Intell. 2021 May 14;PP. doi: 10.1109/TPAMI.2021.3080324.
4
Understanding Atherosclerosis Through an Osteoarthritis Data Set.
Arterioscler Thromb Vasc Biol. 2019 Jun;39(6):1018-1025. doi: 10.1161/ATVBAHA.119.312513.
5
Increasing Accuracy of Optimal Surfaces Using Min-Marginal Energies.
IEEE Trans Med Imaging. 2019 Jul;38(7):1559-1568. doi: 10.1109/TMI.2018.2890386. Epub 2019 Jan 1.
6
A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography.
IEEE Trans Med Imaging. 2019 Jul;38(7):1588-1598. doi: 10.1109/TMI.2018.2883807. Epub 2018 Nov 28.
7
Carotid Artery Remodeling Is Segment Specific: An In Vivo Study by Vessel Wall Magnetic Resonance Imaging.
Arterioscler Thromb Vasc Biol. 2018 Apr;38(4):927-934. doi: 10.1161/ATVBAHA.117.310296. Epub 2018 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验