Suppr超能文献

封端蛋白结合的分子噪声在丝状伪足动力学中诱导宏观不稳定性。

Molecular noise of capping protein binding induces macroscopic instability in filopodial dynamics.

作者信息

Zhuravlev Pavel I, Papoian Garegin A

机构信息

Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11570-5. doi: 10.1073/pnas.0812746106. Epub 2009 Jun 25.

Abstract

Capping proteins are among the most important regulatory proteins involved in controlling complicated stochastic dynamics of filopodia, which are dynamic finger-like protrusions used by eukaryotic motile cells to probe their environment and help guide cell motility. They attach to the barbed end of a filament and prevent polymerization, leading to effective filament retraction due to retrograde flow. When we simulated filopodial growth in the presence of capping proteins, qualitatively different dynamics emerged, compared with actin-only system. We discovered that molecular noise due to capping protein binding and unbinding leads to macroscopic filopodial length fluctuations, compared with minuscule fluctuations in the actin-only system. Thus, our work shows that molecular noise of signaling proteins may induce micrometer-scale growth-retraction cycles in filopodia. When capped, some filaments eventually retract all the way down to the filopodial base and disappear. This process endows filopodium with a finite lifetime. Additionally, the filopodia transiently grow several times longer than in actin-only system, since less actin transport is required because of bundle thinning. We have also developed an accurate mean-field model that provides qualitative explanations of our numerical simulation results. Our results are broadly consistent with experiments, in terms of predicting filopodial growth retraction cycles and the average filopodial lifetimes.

摘要

封端蛋白是参与控制丝状伪足复杂随机动力学的最重要调节蛋白之一,丝状伪足是真核运动细胞用来探测周围环境并帮助引导细胞运动的动态指状突起。它们附着在细丝的尖端并阻止聚合,由于逆向流动导致细丝有效回缩。当我们在有封端蛋白的情况下模拟丝状伪足生长时,与仅含肌动蛋白的系统相比,出现了质的不同的动力学。我们发现,与仅含肌动蛋白的系统中的微小波动相比,由于封端蛋白的结合和解离导致的分子噪声会导致宏观的丝状伪足长度波动。因此,我们的工作表明,信号蛋白的分子噪声可能会在丝状伪足中诱导微米级的生长-回缩循环。当被封端时,一些细丝最终会一直回缩到丝状伪足的基部并消失。这个过程赋予了丝状伪足有限的寿命。此外,由于束变细所需的肌动蛋白运输较少,丝状伪足的瞬时生长比仅含肌动蛋白的系统长几倍。我们还开发了一个精确的平均场模型,该模型对我们的数值模拟结果提供了定性解释。就预测丝状伪足的生长回缩循环和平均丝状伪足寿命而言,我们的结果与实验大致一致。

相似文献

2
The stochastic dynamics of filopodial growth.丝状伪足生长的随机动力学
Biophys J. 2008 May 15;94(10):3839-52. doi: 10.1529/biophysj.107.123778. Epub 2008 Jan 30.
5
Following the footprints of variability during filopodial growth.追寻丝状伪足生长过程中的变异性足迹。
Eur Biophys J. 2020 Oct;49(7):643-659. doi: 10.1007/s00249-020-01473-6. Epub 2020 Nov 3.
6
Helical buckling of actin inside filopodia generates traction.丝状伪足内肌动蛋白的螺旋状屈曲产生牵引力。
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):136-41. doi: 10.1073/pnas.1411761112. Epub 2014 Dec 22.
8
The physics of filopodial protrusion.丝状伪足突出的物理学
Biophys J. 2005 Aug;89(2):782-95. doi: 10.1529/biophysj.104.056515. Epub 2005 May 6.

引用本文的文献

4
Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry.张力诱导的细胞骨架重构:力学先于化学。
PLoS Comput Biol. 2020 Jun 10;16(6):e1007693. doi: 10.1371/journal.pcbi.1007693. eCollection 2020 Jun.

本文引用的文献

1
Limits of filopodium stability.丝状伪足稳定性的限制因素。
Phys Rev Lett. 2008 Jun 27;100(25):258102. doi: 10.1103/PhysRevLett.100.258102. Epub 2008 Jun 23.
2
The stochastic dynamics of filopodial growth.丝状伪足生长的随机动力学
Biophys J. 2008 May 15;94(10):3839-52. doi: 10.1529/biophysj.107.123778. Epub 2008 Jan 30.
4
Stochastic resonant signaling in enzyme cascades.酶级联反应中的随机共振信号传导。
Phys Rev Lett. 2007 Jun 1;98(22):228301. doi: 10.1103/PhysRevLett.98.228301.
10
Model of formin-associated actin filament elongation.formin相关肌动蛋白丝伸长模型。
Mol Cell. 2006 Feb 17;21(4):455-66. doi: 10.1016/j.molcel.2006.01.016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验