Suppr超能文献

丝状伪足突出的物理学

The physics of filopodial protrusion.

作者信息

Mogilner A, Rubinstein B

机构信息

Department of Mathematics, Center for Genetics and Development, University of California, Davis, 95616, USA.

出版信息

Biophys J. 2005 Aug;89(2):782-95. doi: 10.1529/biophysj.104.056515. Epub 2005 May 6.

Abstract

Filopodium, a spike-like actin protrusion at the leading edge of migrating cells, functions as a sensor of the local environment and has a mechanical role in protrusion. We use modeling to examine mechanics and spatial-temporal dynamics of filopodia. We find that >10 actin filaments have to be bundled to overcome the membrane resistance and that the filopodial length is limited by buckling for 10-30 filaments and by G-actin diffusion for >30 filaments. There is an optimal number of bundled filaments, approximately 30, at which the filopodial length can reach a few microns. The model explains characteristic interfilopodial distance of a few microns as a balance of initiation, lateral drift, and merging of the filopodia. The theory suggests that F-actin barbed ends have to be focused and protected from capping (the capping rate has to decrease one order of magnitude) once every hundred seconds per micron of the leading edge to initiate the observed number of filopodia. The model generates testable predictions about how filopodial length, rate of growth, and interfilopodial distance should depend on the number of bundled filaments, membrane resistance, lamellipodial protrusion rate, and G-actin diffusion coefficient.

摘要

丝状伪足是迁移细胞前缘的一种尖刺状肌动蛋白突起,作为局部环境的传感器,并在细胞突起中发挥机械作用。我们使用建模来研究丝状伪足的力学和时空动力学。我们发现,必须捆绑超过10根肌动蛋白丝才能克服膜阻力,并且丝状伪足的长度在有10 - 30根丝时受屈曲限制,在超过30根丝时受G - 肌动蛋白扩散限制。存在一个最佳的捆绑丝数量,约为30根,此时丝状伪足的长度可达几微米。该模型将几微米的特征性丝状伪足间距解释为丝状伪足起始、横向漂移和融合之间的平衡。该理论表明,每微米前缘每100秒,F - 肌动蛋白的带刺末端必须集中并防止封端(封端速率必须降低一个数量级),以启动观察到数量的丝状伪足。该模型生成了关于丝状伪足长度、生长速率和丝状伪足间距应如何依赖于捆绑丝数量、膜阻力、片状伪足突起速率和G - 肌动蛋白扩散系数的可测试预测。

相似文献

1
The physics of filopodial protrusion.丝状伪足突出的物理学
Biophys J. 2005 Aug;89(2):782-95. doi: 10.1529/biophysj.104.056515. Epub 2005 May 6.
2
The stochastic dynamics of filopodial growth.丝状伪足生长的随机动力学
Biophys J. 2008 May 15;94(10):3839-52. doi: 10.1529/biophysj.107.123778. Epub 2008 Jan 30.
3
Mechanics and dynamics of actin-driven thin membrane protrusions.肌动蛋白驱动的薄膜突起的力学与动力学
Biophys J. 2006 Jan 1;90(1):65-76. doi: 10.1529/biophysj.105.071480. Epub 2005 Oct 7.
10
Weak force stalls protrusion at the leading edge of the lamellipodium.弱力会使片足前缘的突出作用停滞。
Biophys J. 2006 Mar 1;90(5):1810-20. doi: 10.1529/biophysj.105.064600. Epub 2005 Dec 2.

引用本文的文献

6
Fascin structural plasticity mediates flexible actin bundle construction.Fascin结构可塑性介导灵活的肌动蛋白束构建。
Nat Struct Mol Biol. 2025 May;32(5):940-952. doi: 10.1038/s41594-024-01477-2. Epub 2025 Jan 20.
7
Traveling-wave chemotaxis of neutrophil-like HL-60 cells.嗜中性粒细胞样HL-60细胞的行波趋化作用。
Mol Biol Cell. 2025 Feb 1;36(2):ar17. doi: 10.1091/mbc.E24-06-0245. Epub 2024 Dec 24.
8
Cellular and Nuclear Forces: An Overview.细胞与核力:概述
Methods Mol Biol. 2025;2881:3-39. doi: 10.1007/978-1-0716-4280-1_1.
10
Molecular counting of myosin force generators in growing filopodia.生长丝状伪足中肌球蛋白力产生器的分子计数
J Biol Chem. 2024 Dec;300(12):107934. doi: 10.1016/j.jbc.2024.107934. Epub 2024 Oct 28.

本文引用的文献

4
Roles of fascin in cell adhesion and motility.Fascin在细胞黏附和运动中的作用。
Curr Opin Cell Biol. 2004 Oct;16(5):590-6. doi: 10.1016/j.ceb.2004.07.009.
5
Myosin X transports Mena/VASP to the tip of filopodia.肌球蛋白X将Mena/VASP转运至丝状伪足尖端。
Biochem Biophys Res Commun. 2004 Jun 18;319(1):214-20. doi: 10.1016/j.bbrc.2004.04.167.
8
How VASP enhances actin-based motility.VASP如何增强基于肌动蛋白的运动性。
J Cell Biol. 2003 Oct 13;163(1):131-42. doi: 10.1083/jcb.200303191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验