Suppr超能文献

对脑内可移动植入物周围胶质增生的评估。

Assessment of gliosis around moveable implants in the brain.

作者信息

Stice Paula, Muthuswamy Jit

机构信息

Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA.

出版信息

J Neural Eng. 2009 Aug;6(4):046004. doi: 10.1088/1741-2560/6/4/046004. Epub 2009 Jun 25.

Abstract

Repositioning microelectrodes post-implantation is emerging as a promising approach to achieve long-term reliability in single neuronal recordings. The main goal of this study was to (a) assess glial reaction in response to movement of microelectrodes in the brain post-implantation and (b) determine an optimal window of time post-implantation when movement of microelectrodes within the brain would result in minimal glial reaction. Eleven Sprague-Dawley rats were implanted with two microelectrodes each that could be moved in vivo post-implantation. Three cohorts were investigated: (1) microelectrode moved at day 2 (n = 4 animals), (2) microelectrode moved at day 14 (n = 5 animals) and (3) microelectrode moved at day 28 (n = 2 animals). Histological evaluation was performed in cohorts 1-3 at four-week post-movement (30 days, 42 days and 56 days post-implantation, respectively). In addition, five control animals were implanted with microelectrodes that were not moved. Control animals were implanted for (1) 30 days (n = 1), (2) 42 days (n = 2) and (3) 56 days (n = 2) prior to histological evaluation. Quantitative assessment of glial fibrillary acidic protein (GFAP) around the tip of the microelectrodes demonstrated that GFAP levels were similar around microelectrodes moved at day 2 when compared to the 30-day controls. However, GFAP expression levels around microelectrode tips that moved at day 14 and day 28 were significantly less than those around control microelectrodes implanted for 42 and 56 days, respectively. Therefore, we conclude that moving microelectrodes after implantation is a viable strategy that does not result in any additional damage to brain tissue. Further, moving the microelectrode downwards after 14 days of implantation may actually reduce the levels of GFAP expression around the tips of the microelectrodes in the long term.

摘要

植入后重新定位微电极正成为一种在单个神经元记录中实现长期可靠性的有前景的方法。本研究的主要目标是:(a)评估植入后大脑中微电极移动引起的胶质反应;(b)确定植入后微电极在大脑内移动会导致最小胶质反应的最佳时间窗。给11只Sprague-Dawley大鼠每只植入两个可在植入后在体内移动的微电极。研究了三个队列:(1)在第2天移动微电极(n = 4只动物),(2)在第14天移动微电极(n = 5只动物),(3)在第28天移动微电极(n = 2只动物)。在移动后四周(分别为植入后30天、42天和56天)对队列1 - 3进行组织学评估。此外,给5只对照动物植入未移动的微电极。在进行组织学评估前,对照动物分别植入(1) 30天(n = 1),(2) 42天(n = 2)和(3) 56天(n = 2)。对微电极尖端周围胶质纤维酸性蛋白(GFAP)的定量评估表明,与30天的对照相比,在第2天移动的微电极周围GFAP水平相似。然而,在第14天和第28天移动的微电极尖端周围的GFAP表达水平分别显著低于植入42天和56天的对照微电极周围的表达水平。因此,我们得出结论,植入后移动微电极是一种可行的策略,不会对脑组织造成任何额外损伤。此外,植入14天后向下移动微电极可能实际上会长期降低微电极尖端周围的GFAP表达水平。

相似文献

1
Assessment of gliosis around moveable implants in the brain.
J Neural Eng. 2009 Aug;6(4):046004. doi: 10.1088/1741-2560/6/4/046004. Epub 2009 Jun 25.
2
Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex.
J Neural Eng. 2016 Jun;13(3):036012. doi: 10.1088/1741-2560/13/3/036012. Epub 2016 Apr 25.
4
Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex.
J Neural Eng. 2007 Jun;4(2):42-53. doi: 10.1088/1741-2560/4/2/005. Epub 2007 Feb 1.
5
Long-term changes in the material properties of brain tissue at the implant-tissue interface.
J Neural Eng. 2013 Dec;10(6):066001. doi: 10.1088/1741-2560/10/6/066001. Epub 2013 Oct 8.
6
Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
J Neural Eng. 2006 Dec;3(4):316-26. doi: 10.1088/1741-2560/3/4/009. Epub 2006 Nov 15.
7
Spatiotemporal expression of RNA-seq identified proteins at the electrode interface.
Acta Biomater. 2023 Jul 1;164:209-222. doi: 10.1016/j.actbio.2023.04.028. Epub 2023 Apr 26.

引用本文的文献

1
Transient electronics for sustainability: Emerging technologies and future directions.
Beilstein J Nanotechnol. 2025 Sep 4;16:1545-1556. doi: 10.3762/bjnano.16.109. eCollection 2025.
2
Finite Element Modeling of Magnitude and Location of Brain Micromotion Induced Strain for Intracortical Implants.
Front Neurosci. 2022 Jan 6;15:727715. doi: 10.3389/fnins.2021.727715. eCollection 2021.
5
State-of-the-art MEMS and microsystem tools for brain research.
Microsyst Nanoeng. 2017 Jan 2;3:16066. doi: 10.1038/micronano.2016.66. eCollection 2017.
7
Cellular-scale probes enable stable chronic subsecond monitoring of dopamine neurochemicals in a rodent model.
Commun Biol. 2018 Sep 12;1:144. doi: 10.1038/s42003-018-0147-y. eCollection 2018.
9
In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces.
Front Neurosci. 2016 Jun 28;10:301. doi: 10.3389/fnins.2016.00301. eCollection 2016.

本文引用的文献

1
Independent positioning of microelectrodes for multisite recordings in vitro.
J Neurosci Methods. 2009 Jan 30;176(2):182-5. doi: 10.1016/j.jneumeth.2008.09.001. Epub 2008 Sep 6.
2
Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants.
J Neural Eng. 2007 Dec;4(4):410-23. doi: 10.1088/1741-2560/4/4/007. Epub 2007 Nov 27.
3
Three-dimensional hydrogel cultures for modeling changes in tissue impedance around microfabricated neural probes.
J Neural Eng. 2007 Dec;4(4):399-409. doi: 10.1088/1741-2560/4/4/006. Epub 2007 Nov 27.
4
Fabrication of polymer neural probes with sub-cellular features for reduced tissue encapsulation.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4606-9. doi: 10.1109/IEMBS.2006.260528.
5
Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1097-107. doi: 10.1109/TBME.2007.895373.
6
Neural probe design for reduced tissue encapsulation in CNS.
Biomaterials. 2007 Sep;28(25):3594-607. doi: 10.1016/j.biomaterials.2007.03.024. Epub 2007 Apr 5.
7
Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex.
J Neural Eng. 2007 Jun;4(2):42-53. doi: 10.1088/1741-2560/4/2/005. Epub 2007 Feb 1.
8
In vitro and in vivo testing of a wireless multichannel stimulating telemetry microsystem.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4294-7. doi: 10.1109/IEMBS.2004.1404196.
10
A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning.
J Neurosci Methods. 2007 Feb 15;160(1):45-51. doi: 10.1016/j.jneumeth.2006.08.009. Epub 2006 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验