Suppr超能文献

用于皮层内植入物的脑微运动诱导应变的大小和位置的有限元建模

Finite Element Modeling of Magnitude and Location of Brain Micromotion Induced Strain for Intracortical Implants.

作者信息

Al Abed Ali, Amatoury Jason, Khraiche Massoud

机构信息

Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon.

Sleep and Upper Airway Research Group, Biomedical Engineering Program, American University of Beirut, Beirut, Lebanon.

出版信息

Front Neurosci. 2022 Jan 6;15:727715. doi: 10.3389/fnins.2021.727715. eCollection 2021.

Abstract

Micromotion-induced stress remains one of the main determinants of life of intracortical implants. This is due to high stress leading to tissue injury, which in turn leads to an immune response coupled with a significant reduction in the nearby neural population and subsequent isolation of the implant. In this work, we develop a finite element model of the intracortical probe-tissue interface to study the effect of implant micromotion, implant thickness, and material properties on the strain levels induced in brain tissue. Our results showed that for stiff implants, the strain magnitude is dependent on the magnitude of the motion, where a micromotion increase from 1 to 10 μm induced an increase in the strain by an order of magnitude. For higher displacement over 10 μm, the change in the strain was relatively smaller. We also showed that displacement magnitude has no impact on the location of maximum strain and addressed the conflicting results in the literature. Further, we explored the effect of different probe materials [i.e., silicon, polyimide (PI), and polyvinyl acetate nanocomposite (PVAc-NC)] on the magnitude, location, and distribution of strain. Finally, we showed that strain distribution across cortical implants was in line with published results on the size of the typical glial response to the neural probe, further reaffirming that strain can be a precursor to the glial response.

摘要

微动引起的应力仍然是皮层内植入物使用寿命的主要决定因素之一。这是因为高应力会导致组织损伤,进而引发免疫反应,同时附近神经细胞数量显著减少,随后植入物被隔离。在这项工作中,我们建立了一个皮层内探针 - 组织界面的有限元模型,以研究植入物微动、植入物厚度和材料特性对脑组织中诱导应变水平的影响。我们的结果表明,对于刚性植入物,应变大小取决于运动幅度,微动从1μm增加到10μm会导致应变增加一个数量级。对于超过10μm的更大位移,应变变化相对较小。我们还表明,位移幅度对最大应变的位置没有影响,并解决了文献中的矛盾结果。此外,我们探讨了不同探针材料[即硅、聚酰亚胺(PI)和聚醋酸乙烯酯纳米复合材料(PVAc - NC)]对应变大小、位置和分布的影响。最后,我们表明跨皮层植入物的应变分布与关于神经探针典型胶质反应大小的已发表结果一致,进一步证实应变可能是胶质反应的前兆。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/794c/8770436/12513ce90fb7/fnins-15-727715-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验