McConnell George C, Schneider Thomas M, Owens D Jason, Bellamkonda Ravi V
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1097-107. doi: 10.1109/TBME.2007.895373.
Micromotion of implanted silicon multielectrode arrays (Si MEAs) is thought to influence the inflammatory response they elicit. The degree of strain that micromotion imparts on surrounding tissue is related to the extent of mechanical integration of the implanted electrodes with the brain. In this study, we quantified the force of extraction of implanted four shank Michigan electrodes in adult rat brains and investigated potential cellular and extracellular matrix contributors to tissue-electrode adhesion using immunohistochemical markers for microglia, astrocytes and extracellular matrix deposition in the immediate vicinity of the electrodes. Our results suggest that the peak extraction force of the implanted electrodes increases significantly from the day of implantation (day 0) to the day of extraction (day 7 and day 28 postimplantation) (1.68 +/- 0.54 g, 3.99 +/- 1.31 g, and 4.86 +/- 1.49 g, respectively; mean +/- SD; n = 4). For an additional group of four shank electrode implants with a closer intershank spacing we observed a significant increase in peak extraction force on day 28 postimplantation compared to day 0 and day 7 postimplantation (5.56 +/- 0.76 g, 0.37 +/- 0.12 g and 1.87 +/- 0.88 g, respectively; n = 4). Significantly, only glial fibrillary acidic protein (GFAP) expression was correlated with peak extraction force in both electrode designs of all the markers of astroglial scar studied. For studies that try to model micromotion-induced strain, our data implies that adhesion between tissue and electrode increases after implantation and sheds light on the nature of implanted electrode-elicited brain tissue reaction.
植入的硅基多电极阵列(Si MEA)的微动被认为会影响其所引发的炎症反应。微动施加于周围组织的应变程度与植入电极与大脑的机械整合程度有关。在本研究中,我们对成年大鼠脑中植入的四杆密歇根电极的拔出力进行了量化,并使用针对电极紧邻区域的小胶质细胞、星形胶质细胞和细胞外基质沉积的免疫组织化学标记物,研究了组织 - 电极粘附的潜在细胞和细胞外基质因素。我们的结果表明,植入电极的峰值拔出力从植入当天(第0天)到拔出当天(植入后第7天和第28天)显著增加(分别为1.68±0.54 g、3.99±1.31 g和4.86±1.49 g;平均值±标准差;n = 4)。对于另一组杆间距更近的四杆电极植入物,我们观察到植入后第28天的峰值拔出力与植入后第0天和第7天相比显著增加(分别为5.56±0.76 g、0.37±0.12 g和1.87±0.88 g;n = 4)。值得注意的是,在所研究的星形胶质瘢痕的所有标记物中,仅胶质纤维酸性蛋白(GFAP)表达与两种电极设计中的峰值拔出力相关。对于试图模拟微动诱导应变的研究,我们的数据表明植入后组织与电极之间的粘附增加,并揭示了植入电极引发的脑组织反应性质。