Suppr超能文献

果蝇神经毒理学: Drosophila 在神经毒理学中不断增长的潜力。

Drosophotoxicology: the growing potential for Drosophila in neurotoxicology.

机构信息

Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, VT 05405, USA.

出版信息

Neurotoxicol Teratol. 2010 Jan-Feb;32(1):74-83. doi: 10.1016/j.ntt.2009.06.004. Epub 2009 Jun 24.

Abstract

Understanding neurotoxic mechanisms is a challenge of deciphering which genes and gene products in the developing or mature nervous system are targeted for disruption by chemicals we encounter in our environment. Our understanding of nervous system development and physiology is highly advanced due in large part to studies conducted in simple non-mammalian models. The paucity of toxicological data for the more than 80,000 chemicals in commercial use today, and the approximately 2000 new chemicals introduced each year, makes development of sensitive and rapid assays to screen for neurotoxicity paramount. In this article I advocate the use of Drosophila in the modern regimen of toxicological testing, emphasizing its unique attributes for assaying neurodevelopment and behavior. Features of the Drosophila model are reviewed and a generalized overall scheme for its use in toxicology is presented. Examples of where the fly has proven fruitful in evaluating common toxicants in our environment are also highlighted. Attention is drawn to three areas where development and application of the fly model might benefit toxicology the most: 1) optimizing sensitive endpoints for pathway-specific screening, 2) accommodating high throughput demands for analysis of chemical toxicant libraries, 3) optimizing genetic and molecular protocols for more rapid identification toxicant-by-gene interactions. While there are shortcomings in the Drosophila model, which exclude it from effective toxicological testing in certain arenas, conservation of fundamental cellular and developmental mechanisms between flies and man is extensive enough to warrant a central role for the Drosophila model in toxicological testing of today.

摘要

了解神经毒性机制是一项挑战,需要破译我们在环境中遇到的化学物质针对发育或成熟神经系统中的哪些基因和基因产物进行干扰。由于在简单的非哺乳动物模型中进行的研究,我们对神经系统发育和生理学的理解已经非常先进。目前,商业用途的超过 80,000 种化学物质中,仅有很少的毒性数据,并且每年大约有 2000 种新的化学物质被引入,因此开发用于筛选神经毒性的敏感和快速检测方法至关重要。在本文中,我主张在现代毒理学测试中使用果蝇,强调其在测定神经发育和行为方面的独特属性。本文回顾了果蝇模型的特点,并提出了其在毒理学中的一般应用方案。还强调了在评估我们环境中的常见有毒物质方面,果蝇模型已经被证明是非常有效的。本文还提到了三个领域,在这些领域中,蝇模型的发展和应用最有可能使毒理学受益:1)优化针对特定途径的敏感终点进行筛选,2)满足对化学毒物文库进行高通量分析的需求,3)优化遗传和分子方案,以更快速地鉴定有毒物质与基因的相互作用。虽然果蝇模型存在一些缺点,使其在某些领域无法有效进行毒理学测试,但果蝇与人之间基本细胞和发育机制的保守性足以证明其在当今毒理学测试中应发挥核心作用。

相似文献

1
Drosophotoxicology: the growing potential for Drosophila in neurotoxicology.
Neurotoxicol Teratol. 2010 Jan-Feb;32(1):74-83. doi: 10.1016/j.ntt.2009.06.004. Epub 2009 Jun 24.
2
Medium- and high-throughput screening of neurotoxicants using C. elegans.
Neurotoxicol Teratol. 2010 Jan-Feb;32(1):68-73. doi: 10.1016/j.ntt.2008.12.004. Epub 2009 Jan 6.
3
Utility of Caenorhabditis elegans in high throughput neurotoxicological research.
Neurotoxicol Teratol. 2010 Jan-Feb;32(1):62-7. doi: 10.1016/j.ntt.2008.11.005. Epub 2008 Dec 7.
4
6
Relevance of in vitro neurotoxicity testing for regulatory requirements: challenges to be considered.
Neurotoxicol Teratol. 2010 Jan-Feb;32(1):36-41. doi: 10.1016/j.ntt.2008.12.003. Epub 2008 Dec 24.
7
Accurate risk-based chemical screening relies on robust exposure estimates.
Toxicol Sci. 2012 Jul;128(1):295-6; author reply 297-9. doi: 10.1093/toxsci/kfs143. Epub 2012 Apr 20.
8
Drosophila as a Model for Developmental Toxicology: Using and Extending the Drosophotoxicology Model.
Methods Mol Biol. 2019;1965:139-153. doi: 10.1007/978-1-4939-9182-2_10.
9
Strategies and tools for preventing neurotoxicity: to test, to predict and how to do it.
Neurotoxicology. 2012 Aug;33(4):796-804. doi: 10.1016/j.neuro.2012.01.019. Epub 2012 Feb 7.
10
Multi-Behavioral Endpoint Testing of an 87-Chemical Compound Library in Freshwater Planarians.
Toxicol Sci. 2019 Jan 1;167(1):26-44. doi: 10.1093/toxsci/kfy145.

引用本文的文献

1
Diversity and functions of fungal VOCs with special reference to the multiple bioactivities of the mushroom alcohol.
Mycology. 2025 Feb 2;16(3):1011-1022. doi: 10.1080/21501203.2025.2453717. eCollection 2025.
2
Arsenic toxicity in the brain at single cell resolution.
Front Toxicol. 2025 Jul 10;7:1636431. doi: 10.3389/ftox.2025.1636431. eCollection 2025.
5
Exploring the versatility of as a model organism in biomedical research: a comprehensive review.
Fly (Austin). 2025 Dec;19(1):2420453. doi: 10.1080/19336934.2024.2420453. Epub 2024 Dec 25.
6
A High-Throughput Method for Quantifying Fecundity.
Toxics. 2024 Sep 9;12(9):658. doi: 10.3390/toxics12090658.
7
Screening tools to evaluate the neurotoxic potential of botanicals: building a strategy to assess safety.
Expert Opin Drug Metab Toxicol. 2024 Jul;20(7):629-646. doi: 10.1080/17425255.2024.2378895. Epub 2024 Jul 22.
8
Future avenues in mushroom body research.
Learn Mem. 2024 Jun 11;31(5). doi: 10.1101/lm.053863.123. Print 2024 May.
9
Review: myogenic and muscle toxicity targets of environmental methylmercury exposure.
Arch Toxicol. 2024 Jun;98(6):1645-1658. doi: 10.1007/s00204-024-03724-3. Epub 2024 Mar 28.
10
Evaluation of the toxic potential of Bisphenol-A glycidylmethacrylate (BisGMA) on the third instar larvae of transgenic .
Toxicol Res (Camb). 2024 Mar 4;13(2):tfae026. doi: 10.1093/toxres/tfae026. eCollection 2024 Apr.

本文引用的文献

1
Variations at a quantitative trait locus (QTL) affect development of behavior in lead-exposed Drosophila melanogaster.
Neurotoxicology. 2009 Mar;30(2):305-11. doi: 10.1016/j.neuro.2009.01.004. Epub 2009 Jan 21.
2
High-throughput ethomics in large groups of Drosophila.
Nat Methods. 2009 Jun;6(6):451-7. doi: 10.1038/nmeth.1328. Epub 2009 May 3.
3
Methylmercury disruption of embryonic neural development in Drosophila.
Neurotoxicology. 2009 Sep;30(5):794-802. doi: 10.1016/j.neuro.2009.04.006. Epub 2009 May 4.
4
A role for Drosophila in understanding drug-induced cytotoxicity and teratogenesis.
Cytotechnology. 2008 May;57(1):1-9. doi: 10.1007/s10616-008-9124-5. Epub 2008 Jan 30.
6
The genetic architecture of complex behaviors: lessons from Drosophila.
Genetica. 2009 Jun;136(2):295-302. doi: 10.1007/s10709-008-9310-6. Epub 2008 Aug 29.
7
Methylmercury activates enhancer-of-split and bearded complex genes independent of the notch receptor.
Toxicol Sci. 2008 Jul;104(1):163-76. doi: 10.1093/toxsci/kfn060. Epub 2008 Mar 25.
8
Long-term methotrexate for Crohn's disease: safety and efficacy in clinical practice.
J Clin Gastroenterol. 2008 Apr;42(4):395-9. doi: 10.1097/MCG.0b013e31802e6875.
9
Toxicology. Transforming environmental health protection.
Science. 2008 Feb 15;319(5865):906-7. doi: 10.1126/science.1154619.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验