Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
Genetics. 2009 Sep;183(1):385-97. doi: 10.1534/genetics.109.105254. Epub 2009 Jun 29.
We designed and experimentally validated an in silico gene deletion strategy for engineering endogenous one-carbon (C1) metabolism in yeast. We used constraint-based metabolic modeling and computer-aided gene knockout simulations to identify five genes (ALT2, FDH1, FDH2, FUM1, and ZWF1), which, when deleted in combination, predicted formic acid secretion in Saccharomyces cerevisiae under aerobic growth conditions. Once constructed, the quintuple mutant strain showed the predicted increase in formic acid secretion relative to a formate dehydrogenase mutant (fdh1 fdh2), while formic acid secretion in wild-type yeast was undetectable. Gene expression and physiological data generated post hoc identified a retrograde response to mitochondrial deficiency, which was confirmed by showing Rtg1-dependent NADH accumulation in the engineered yeast strain. Formal pathway analysis combined with gene expression data suggested specific modes of regulation that govern C1 metabolic flux in yeast. Specifically, we identified coordinated transcriptional regulation of C1 pathway enzymes and a positive flux control coefficient for the branch point enzyme 3-phosphoglycerate dehydrogenase (PGDH). Together, these results demonstrate that constraint-based models can identify seemingly unrelated mutations, which interact at a systems level across subcellular compartments to modulate flux through nonfermentative metabolic pathways.
我们设计并实验验证了一种用于工程酵母内源性一碳(C1)代谢的计算机基因缺失策略。我们使用基于约束的代谢建模和计算机辅助基因敲除模拟来识别五个基因(ALT2、FDH1、FDH2、FUM1 和 ZWF1),当这些基因联合缺失时,预测在有氧生长条件下酵母中甲酸的分泌。构建完成后,五重突变株表现出相对于甲酸脱氢酶突变株(fdh1 fdh2)的预测增加的甲酸分泌,而野生型酵母中的甲酸分泌则无法检测到。事后产生的基因表达和生理数据确定了对线粒体缺陷的逆行反应,这通过显示工程酵母菌株中 Rtg1 依赖性 NADH 积累得到了证实。正式的途径分析结合基因表达数据表明,C1 代谢通量在酵母中有特定的调节模式。具体而言,我们确定了 C1 途径酶的协调转录调控,以及分支点酶 3-磷酸甘油酸脱氢酶(PGDH)的正通量控制系数。总之,这些结果表明,基于约束的模型可以识别出看似无关的突变,这些突变在细胞内区室之间以系统水平相互作用,从而调节非发酵代谢途径中的通量。