Suppr超能文献

使用因子分析器混合模型和变分贝叶斯期望最大化方法对转录调控进行建模。

Modelling transcriptional regulation with a mixture of factor analyzers and variational Bayesian expectation maximization.

作者信息

Lin Kuang, Husmeier Dirk

机构信息

Biomathematics & Statistics Scotland (BioSS), Edinburgh, UK.

出版信息

EURASIP J Bioinform Syst Biol. 2009;2009(1):601068. doi: 10.1155/2009/601068. Epub 2009 Jun 11.

Abstract

Understanding the mechanisms of gene transcriptional regulation through analysis of high-throughput postgenomic data is one of the central problems of computational systems biology. Various approaches have been proposed, but most of them fail to address at least one of the following objectives: (1) allow for the fact that transcription factors are potentially subject to posttranscriptional regulation; (2) allow for the fact that transcription factors cooperate as a functional complex in regulating gene expression, and (3) provide a model and a learning algorithm with manageable computational complexity. The objective of the present study is to propose and test a method that addresses these three issues. The model we employ is a mixture of factor analyzers, in which the latent variables correspond to different transcription factors, grouped into complexes or modules. We pursue inference in a Bayesian framework, using the Variational Bayesian Expectation Maximization (VBEM) algorithm for approximate inference of the posterior distributions of the model parameters, and estimation of a lower bound on the marginal likelihood for model selection. We have evaluated the performance of the proposed method on three criteria: activity profile reconstruction, gene clustering, and network inference.

摘要

通过高通量后基因组数据分析来理解基因转录调控机制是计算系统生物学的核心问题之一。人们已经提出了各种方法,但其中大多数方法至少无法满足以下目标之一:(1)考虑到转录因子可能受到转录后调控这一事实;(2)考虑到转录因子作为功能复合物协同调节基因表达这一事实;以及(3)提供一种具有可管理计算复杂度的模型和学习算法。本研究的目的是提出并测试一种解决这三个问题的方法。我们采用的模型是因子分析器的混合模型,其中潜在变量对应于不同的转录因子,这些转录因子被分组为复合物或模块。我们在贝叶斯框架下进行推理,使用变分贝叶斯期望最大化(VBEM)算法对模型参数的后验分布进行近似推理,并估计用于模型选择的边际似然的下限。我们从三个标准评估了所提出方法的性能:活性谱重建、基因聚类和网络推理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a921/3171433/43822a16601d/1687-4153-2009-601068-1.jpg

相似文献

1
Modelling transcriptional regulation with a mixture of factor analyzers and variational Bayesian expectation maximization.
EURASIP J Bioinform Syst Biol. 2009;2009(1):601068. doi: 10.1155/2009/601068. Epub 2009 Jun 11.
2
Latent-space variational bayes.
IEEE Trans Pattern Anal Mach Intell. 2008 Dec;30(12):2236-42. doi: 10.1109/TPAMI.2008.157.
3
Bayesian estimation of beta mixture models with variational inference.
IEEE Trans Pattern Anal Mach Intell. 2011 Nov;33(11):2160-73. doi: 10.1109/TPAMI.2011.63.
4
Bayesian Estimation of the von-Mises Fisher Mixture Model with Variational Inference.
IEEE Trans Pattern Anal Mach Intell. 2014 Sep;36(9):1701-15. doi: 10.1109/TPAMI.2014.2306426.
5
Constructing gene networks using variational Bayesian variable selection.
Artif Life. 2008 Winter;14(1):65-79. doi: 10.1162/artl.2008.14.1.65.
6
Variational Inference for Watson Mixture Model.
IEEE Trans Pattern Anal Mach Intell. 2016 Sep;38(9):1886-900. doi: 10.1109/TPAMI.2015.2498935. Epub 2015 Nov 9.
7
Development of a variational scheme for model inversion of multi-area model of brain. Part II: VBEM method.
Math Biosci. 2011 Jan;229(1):76-92. doi: 10.1016/j.mbs.2010.11.001. Epub 2010 Nov 16.
9
Gaussian variational estimation for multidimensional item response theory.
Br J Math Stat Psychol. 2021 Jul;74 Suppl 1:52-85. doi: 10.1111/bmsp.12219. Epub 2020 Oct 16.
10
Latent Network Estimation and Variable Selection for Compositional Data Via Variational EM.
J Comput Graph Stat. 2022;31(1):163-175. doi: 10.1080/10618600.2021.1935971. Epub 2021 Jul 19.

引用本文的文献

1
Learning transcriptional regulation on a genome scale: a theoretical analysis based on gene expression data.
Brief Bioinform. 2012 Mar;13(2):150-61. doi: 10.1093/bib/bbr029. Epub 2011 May 26.

本文引用的文献

1
Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data.
Bioinformatics. 2008 Jun 1;24(11):1349-58. doi: 10.1093/bioinformatics/btn131. Epub 2008 Apr 9.
3
Bayesian haplotype inference via the Dirichlet process.
J Comput Biol. 2007 Apr;14(3):267-84. doi: 10.1089/cmb.2006.0102.
4
Factor analysis for gene regulatory networks and transcription factor activity profiles.
BMC Bioinformatics. 2007 Feb 23;8:61. doi: 10.1186/1471-2105-8-61.
5
Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities.
Bioinformatics. 2006 Nov 15;22(22):2775-81. doi: 10.1093/bioinformatics/btl473. Epub 2006 Sep 11.
6
The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D446-51. doi: 10.1093/nar/gkj013.
7
Bayesian sparse hidden components analysis for transcription regulation networks.
Bioinformatics. 2006 Mar 15;22(6):739-46. doi: 10.1093/bioinformatics/btk017. Epub 2005 Dec 20.
8
A bi-dimensional regression tree approach to the modeling of gene expression regulation.
Bioinformatics. 2006 Feb 1;22(3):332-40. doi: 10.1093/bioinformatics/bti792. Epub 2005 Nov 22.
10
Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression.
Mol Cell Biol. 2004 Nov;24(21):9542-56. doi: 10.1128/MCB.24.21.9542-9556.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验