Suppr超能文献

在脂质环境中对小鼠电压依赖性阴离子通道1(VDAC1)晶体进行的晶体堆积分析揭示了关于寡聚化和取向的新见解。

Crystal packing analysis of murine VDAC1 crystals in a lipidic environment reveals novel insights on oligomerization and orientation.

作者信息

Ujwal Rachna, Cascio Duilio, Chaptal Vincent, Ping Peipei, Abramson Jeff

机构信息

Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.

出版信息

Channels (Austin). 2009 May-Jun;3(3):167-70. doi: 10.4161/chan.3.3.9196. Epub 2009 May 15.

Abstract

All eukaryotic cells require efficient trafficking of metabolites between the mitochondria and the rest of the cell. This exchange is carried out by the dominant protein in the outer mitochondrial membrane (OMM), the Voltage Dependent Anion Channel (VDAC), which serves as the primary pathway for the exchange of ions and metabolites between the cytoplasm and the intermembrane space of the mitochondria. Additionally, VDAC provides a scaffold for the binding of modulator proteins to the mitochondria and has been implicated in mitochondria-dependent cell death. We recently determined the structure of the murine VDAC1 (mVDAC1) at 2.3 A resolution crystallized in a native-like bilayer environment. The high-resolution structure provided concise structural details about the voltage-sensing N-terminal domain and catalyzed new hypotheses regarding the gating mechanisms for metabolites and ions that transit the OMM. In this study, the crystal packing of mVDAC1 is analyzed revealing a strong antiparallel dimer that further assemble as hexamers mimicking the native oligomeric packing observed in EM and AFM images of the OMM. Oligomerization has been shown to be important for VDAC regulation and function, and mVDAC1 crystal packing in a lipidic medium reveals insights on how oligomerization is accomplished using protein-protein and protein-lipid interactions. Furthermore, orientation of VDAC in the OMM remains uncertain due to inconsistencies in antibody labeling studies. The physiological implications of a novel antiparallel arrangement are addressed that may clarify these conflicting biochemical data.

摘要

所有真核细胞都需要在线粒体与细胞其他部分之间高效运输代谢物。这种交换由线粒体外膜(OMM)中的主要蛋白质——电压依赖性阴离子通道(VDAC)来完成,它是细胞质与线粒体膜间隙之间离子和代谢物交换的主要途径。此外,VDAC为调节蛋白与线粒体的结合提供了一个支架,并且与线粒体依赖性细胞死亡有关。我们最近在类似天然双层膜的环境中,以2.3埃的分辨率确定了小鼠VDAC1(mVDAC1)的结构。该高分辨率结构提供了有关电压感应N端结构域的精确结构细节,并催生了关于穿过线粒体外膜的代谢物和离子门控机制的新假说。在本研究中,对mVDAC1的晶体堆积进行了分析,发现了一种强反平行二聚体,该二聚体进一步组装成六聚体,类似于在OMM的电子显微镜和原子力显微镜图像中观察到的天然寡聚体堆积。已证明寡聚化对VDAC的调节和功能很重要,mVDAC1在脂质介质中的晶体堆积揭示了寡聚化是如何通过蛋白质-蛋白质和蛋白质-脂质相互作用实现的。此外,由于抗体标记研究结果不一致,VDAC在线粒体外膜中的方向仍不确定。本文探讨了一种新型反平行排列的生理意义,这可能会澄清这些相互矛盾的生化数据。

相似文献

1
Crystal packing analysis of murine VDAC1 crystals in a lipidic environment reveals novel insights on oligomerization and orientation.
Channels (Austin). 2009 May-Jun;3(3):167-70. doi: 10.4161/chan.3.3.9196. Epub 2009 May 15.
2
The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17742-7. doi: 10.1073/pnas.0809634105. Epub 2008 Nov 6.
3
Crystal structural characterization reveals novel oligomeric interactions of human voltage-dependent anion channel 1.
Protein Sci. 2017 Sep;26(9):1749-1758. doi: 10.1002/pro.3211. Epub 2017 Jun 21.
4
Assessing the role of residue E73 and lipid headgroup charge in VDAC1 voltage gating.
Biochim Biophys Acta Bioenerg. 2019 Jan;1860(1):22-29. doi: 10.1016/j.bbabio.2018.11.001. Epub 2018 Nov 6.
5
Protonation state of glutamate 73 regulates the formation of a specific dimeric association of mVDAC1.
Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E172-E179. doi: 10.1073/pnas.1715464115. Epub 2017 Dec 26.
6
Oligomerization of the mitochondrial protein VDAC1: from structure to function and cancer therapy.
Prog Mol Biol Transl Sci. 2013;117:303-34. doi: 10.1016/B978-0-12-386931-9.00011-8.
7
Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1281-91. doi: 10.1016/j.bbabio.2010.03.003. Epub 2010 Mar 6.
9
Conservation of the oligomeric state of native VDAC1 in detergent micelles.
Biochimie. 2016 Aug;127:163-72. doi: 10.1016/j.biochi.2016.05.015. Epub 2016 May 27.
10
Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1.
Nat Struct Mol Biol. 2014 Jul;21(7):626-32. doi: 10.1038/nsmb.2841. Epub 2014 Jun 8.

引用本文的文献

1
Membrane lipid composition modulates the organization of VDAC1, a mitochondrial gatekeeper.
Commun Biol. 2025 Jun 17;8(1):936. doi: 10.1038/s42003-025-08311-5.
2
Conformational plasticity of mitochondrial VDAC2 controls the kinetics of its interaction with cytosolic proteins.
Sci Adv. 2025 Apr 25;11(17):eadv4410. doi: 10.1126/sciadv.adv4410. Epub 2025 Apr 23.
3
Hexokinase-I directly binds to a charged membrane-buried glutamate of mitochondrial VDAC1 and VDAC2.
Commun Biol. 2025 Feb 10;8(1):212. doi: 10.1038/s42003-025-07551-9.
4
Decoding Cancer through Silencing the Mitochondrial Gatekeeper VDAC1.
Biomolecules. 2024 Oct 15;14(10):1304. doi: 10.3390/biom14101304.
6
Hypoxia-induced GPCPD1 depalmitoylation triggers mitophagy via regulating PRKN-mediated ubiquitination of VDAC1.
Autophagy. 2023 Sep;19(9):2443-2463. doi: 10.1080/15548627.2023.2182482. Epub 2023 Mar 1.
7
Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target?
Front Physiol. 2021 Oct 4;12:730048. doi: 10.3389/fphys.2021.730048. eCollection 2021.
8
VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease.
Cell Calcium. 2021 Mar;94:102356. doi: 10.1016/j.ceca.2021.102356. Epub 2021 Jan 23.
9
VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases.
Biomolecules. 2020 Oct 26;10(11):1485. doi: 10.3390/biom10111485.
10

本文引用的文献

1
Probing the orientation of yeast VDAC1 in vivo.
FEBS Lett. 2009 Feb 18;583(4):739-42. doi: 10.1016/j.febslet.2009.01.039. Epub 2009 Jan 29.
2
EmrE, a model for studying evolution and mechanism of ion-coupled transporters.
Biochim Biophys Acta. 2009 May;1794(5):748-62. doi: 10.1016/j.bbapap.2008.12.018. Epub 2009 Jan 3.
3
The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17742-7. doi: 10.1073/pnas.0809634105. Epub 2008 Nov 6.
4
Structure of the human voltage-dependent anion channel.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15370-5. doi: 10.1073/pnas.0808115105. Epub 2008 Oct 1.
5
Solution structure of the integral human membrane protein VDAC-1 in detergent micelles.
Science. 2008 Aug 29;321(5893):1206-10. doi: 10.1126/science.1161302.
6
VDAC regulation: role of cytosolic proteins and mitochondrial lipids.
J Bioenerg Biomembr. 2008 Jun;40(3):163-70. doi: 10.1007/s10863-008-9145-y.
7
Uncovering the role of VDAC in the regulation of cell life and death.
J Bioenerg Biomembr. 2008 Jun;40(3):183-91. doi: 10.1007/s10863-008-9147-9.
8
Disruption of the hexokinase-VDAC complex for tumor therapy.
Oncogene. 2008 Aug 7;27(34):4633-5. doi: 10.1038/onc.2008.114. Epub 2008 May 12.
9
X-ray structure of EmrE supports dual topology model.
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18999-9004. doi: 10.1073/pnas.0709387104. Epub 2007 Nov 16.
10
Inference of macromolecular assemblies from crystalline state.
J Mol Biol. 2007 Sep 21;372(3):774-97. doi: 10.1016/j.jmb.2007.05.022. Epub 2007 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验