Suppr超能文献

黄斑病变患者的眼波前像差。

Ocular wavefront aberrations in patients with macular diseases.

机构信息

Department of Ophthalmology, University of California San Diego, Jacobs Retina Center/Shiley Eye Center, La Jolla, California 92093-0946, USA.

出版信息

Retina. 2009 Oct;29(9):1356-63. doi: 10.1097/IAE.0b013e3181a5e657.

Abstract

BACKGROUND

There have been reports that by compensating for ocular aberrations using adaptive optical systems it may be possible to improve the resolution of clinical retinal imaging systems beyond what is now possible. To develop such a system to observe eyes with retinal disease, understanding of ocular wavefront aberrations in individuals with retinal disease is required.

METHODS

Eighty-two eyes of 66 patients with macular disease (epiretinal membrane, macular edema, macular hole, etc.) and 85 eyes of 51 patients without retinal disease were studied. Using a ray-tracing wavefront device, each eye was scanned at both small and large pupil apertures, and Zernike coefficients up to the sixth order were acquired.

RESULTS

In phakic eyes, third-order root mean square errors in the macular disease group were statistically greater than in the control group, an average of 12% for 5-mm and 31% for 3-mm scan diameters (P < 0.021). In pseudophakic eyes, there was also an elevation of third-order root mean square, on average 57% for 5-mm and 51% for 3-mm scan diameters (P < 0.031).

CONCLUSION

Higher-order wavefront aberrations in eyes with macular disease were greater than in control eyes without disease. This study suggests that such aberrations may result from irregular or multiple reflecting retinal surfaces. Modifications in wavefront sensor technology will be needed to accurately determine wavefront aberration and allow correction using adaptive optics in eyes with macular irregularities.

摘要

背景

有报道称,通过自适应光学系统补偿眼像差,可能使临床视网膜成像系统的分辨率超过目前的水平。为了开发这种系统来观察患有视网膜疾病的眼睛,需要了解患有视网膜疾病的个体的眼波前像差。

方法

研究了 66 名患有黄斑疾病(如视网膜内膜、黄斑水肿、黄斑裂孔等)的 82 只眼和 51 名无视网膜疾病的 85 只眼。使用光线追踪波前设备,对每只眼在小瞳孔和大瞳孔孔径下进行扫描,并获得了最高到第六阶的泽尼克系数。

结果

在有晶状体眼,黄斑疾病组的三阶均方根误差明显大于对照组,平均在 5mm 扫描直径时为 12%,在 3mm 扫描直径时为 31%(P<0.021)。在无晶状体眼中,三阶均方根误差也升高,平均在 5mm 扫描直径时为 57%,在 3mm 扫描直径时为 51%(P<0.031)。

结论

患有黄斑疾病的眼睛中的高阶波前像差大于无疾病的对照组。本研究表明,这些像差可能是由不规则或多个反射视网膜表面引起的。需要对波前传感器技术进行改进,以准确确定波前像差,并允许在有黄斑不规则的眼睛中使用自适应光学进行校正。

相似文献

1
Ocular wavefront aberrations in patients with macular diseases.
Retina. 2009 Oct;29(9):1356-63. doi: 10.1097/IAE.0b013e3181a5e657.
2
OCULAR WAVEFRONT ABERRATIONS AND OPTICAL QUALITY IN DIABETIC MACULAR EDEMA.
Retina. 2016 Jan;36(1):28-36. doi: 10.1097/IAE.0000000000000646.
4
Comparison of wavefront aberrations under cycloplegic, scotopic and photopic conditions using WaveScan.
Arq Bras Oftalmol. 2012 Mar-Apr;75(2):116-21. doi: 10.1590/s0004-27492012000200009.
5
From corneal shape to ocular wavefront in eyes with aspheric IOLs: the feasibility of IOL customisation.
Ophthalmic Physiol Opt. 2016 Jan;36(1):43-50. doi: 10.1111/opo.12258. Epub 2015 Oct 21.
6
Stability of corneal topography and wavefront aberrations in young Singaporeans.
Clin Exp Optom. 2013 Sep;96(5):486-93. doi: 10.1111/cxo.12040. Epub 2013 Apr 23.
7
Changes in higher-order aberrations after iris-fixated phakic intraocular lens implantation.
J Refract Surg. 2013 Oct;29(10):693-700. doi: 10.3928/1081597X-20130816-01. Epub 2013 Aug 23.
9
LASIK-induced aberrations: comparing corneal and whole-eye measurements.
Optom Vis Sci. 2015 Apr;92(4):447-55. doi: 10.1097/OPX.0000000000000557.
10
Ocular, corneal, and internal aberrations in eyes with keratoconus, forme fruste keratoconus, and healthy eyes.
Int Ophthalmol. 2018 Aug;38(4):1565-1573. doi: 10.1007/s10792-017-0620-5. Epub 2017 Jun 24.

引用本文的文献

1
Improvements on speed, stability and field of view in adaptive optics OCT for anterior retinal imaging using a pyramid wavefront sensor.
Biomed Opt Express. 2024 Sep 30;15(10):6098-6116. doi: 10.1364/BOE.533451. eCollection 2024 Oct 1.
2
Assessment of long-term intraocular lens (IOL) decentration and tilt in eyes with pseudoexfoliation syndrome (PES) following cataract surgery.
Graefes Arch Clin Exp Ophthalmol. 2018 Dec;256(12):2361-2367. doi: 10.1007/s00417-018-4132-4. Epub 2018 Oct 1.
3
Biometric and refractive changes after orbital decompression in Korean patients with thyroid-associated orbitopathy.
Eye (Lond). 2016 Mar;30(3):400-5. doi: 10.1038/eye.2015.242. Epub 2015 Nov 20.
4
Wavefront error correction with adaptive optics in diabetic retinopathy.
Optom Vis Sci. 2014 Oct;91(10):1238-43. doi: 10.1097/OPX.0000000000000252.

本文引用的文献

1
Adaptive optics scanning laser ophthalmoscopy.
Opt Express. 2002 May 6;10(9):405-12. doi: 10.1364/oe.10.000405.
2
Image metrics for predicting subjective image quality.
Optom Vis Sci. 2005 May;82(5):358-369. doi: 10.1097/01.OPX.0000162647.80768.7F.
3
Evaluation of refractive error measurements of the Wavescan Wavefront system and the Tracey Wavefront aberrometer.
J Cataract Refract Surg. 2003 May;29(5):970-9. doi: 10.1016/s0886-3350(02)01967-3.
4
Changes of higher order aberration with various pupil sizes in the myopic eye.
J Refract Surg. 2003 Mar-Apr;19(2 Suppl):S270-4. doi: 10.3928/1081-597X-20030302-21.
5
Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed.
J Opt Soc Am A Opt Image Sci Vis. 2003 Feb;20(2):209-17. doi: 10.1364/josaa.20.000209.
6
Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer.
Optom Vis Sci. 2003 Jan;80(1):6-14. doi: 10.1097/00006324-200301000-00003.
7
Scaling Zernike expansion coefficients to different pupil sizes.
J Opt Soc Am A Opt Image Sci Vis. 2002 Oct;19(10):1937-45. doi: 10.1364/josaa.19.001937.
8
Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas.
J Refract Surg. 2002 Sep-Oct;18(5):S579-83. doi: 10.3928/1081-597X-20020901-16.
10
Retinal imaging with a low-cost micromachined membrane deformable mirror.
J Biomed Opt. 2002 Jul;7(3):451-6. doi: 10.1117/1.1483083.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验