Suppr超能文献

陶瓷基微电极阵列和微透析探针长期植入大鼠前额叶皮层的组织学效应研究。

Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex.

作者信息

Hascup Erin R, af Bjerkén Sara, Hascup Kevin N, Pomerleau Francois, Huettl Peter, Strömberg Ingrid, Gerhardt Greg A

机构信息

Anatomy and Neurobiology, Morris K. Udall Parkinson's Disease Research Center of Excellence, Center for Microelectrode Technology, University of Kentucky, College of Medicine, Lexington, KY, 40536-0098 USA.

出版信息

Brain Res. 2009 Sep 29;1291:12-20. doi: 10.1016/j.brainres.2009.06.084. Epub 2009 Jul 3.

Abstract

Chronic implantation of neurotransmitter measuring devices is essential for awake, behavioral studies occurring over multiple days. Little is known regarding the effects of long term implantation on surrounding brain parenchyma and the resulting alterations in the functional properties of this tissue. We examined the extent of tissue damage produced by chronic implantation of either ceramic microelectrode arrays (MEAs) or microdialysis probes. Histological studies were carried out on fixed tissues using stains for neurons (cresyl violet), astrocytes (GFAP), microglia (Iba1), glutamatergic nerve fibers (VGLUT1), and the blood-brain barrier (SMI-71). Nissl staining showed pronounced tissue body loss with microdialysis implants compared to MEAs. The MEAs produced mild gliosis extending 50-100 microm from the tracks, with a significant change in the affected areas starting at 3 days. By contrast, the microdialysis probes produced gliosis extending 200-300 microm from the track, which was significant at 3 and 7 days. Markers for microglia and glutamatergic fibers supported that the MEAs produce minimal damage with significant changes occurring only at 3 and 7 days that return to control levels by 1 month. SMI-71 staining supported the integrity of the blood-brain barrier out to 1 week for both the microdialysis probes and the MEAs. This data support that the ceramic MEA's small size and biocompatibility are necessary to accurately measure neurotransmitter levels in the intact brain. The minimal invasiveness of the MEAs reduce tissue loss, allowing for long term (>6 month) electrochemical and electrophysiological monitoring of brain activity.

摘要

长期植入神经递质测量装置对于多日清醒行为研究至关重要。关于长期植入对周围脑实质的影响以及该组织功能特性由此产生的改变,我们知之甚少。我们研究了陶瓷微电极阵列(MEA)或微透析探针长期植入所产生的组织损伤程度。使用针对神经元(甲酚紫)、星形胶质细胞(GFAP)、小胶质细胞(Iba1)、谷氨酸能神经纤维(VGLUT1)和血脑屏障(SMI - 71)的染色剂,对固定组织进行了组织学研究。尼氏染色显示,与MEA相比,微透析植入物导致明显的组织体损失。MEA产生轻度胶质增生,从轨迹延伸50 - 100微米,受影响区域在3天时开始出现显著变化。相比之下,微透析探针产生的胶质增生从轨迹延伸200 - 300微米,在3天和7天时显著。小胶质细胞和谷氨酸能纤维的标志物表明,MEA造成的损伤最小,仅在3天和7天时出现显著变化,到1个月时恢复到对照水平。SMI - 71染色支持微透析探针和MEA的血脑屏障完整性持续到1周。这些数据支持,陶瓷MEA的小尺寸和生物相容性对于准确测量完整大脑中的神经递质水平是必要的。MEA的微创性减少了组织损失,允许对大脑活动进行长期(>6个月)的电化学和电生理监测。

相似文献

2
Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex.
Biomaterials. 2024 Jul;308:122543. doi: 10.1016/j.biomaterials.2024.122543. Epub 2024 Mar 21.
3
Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats.
J Neurochem. 2007 Aug;102(3):712-22. doi: 10.1111/j.1471-4159.2007.04596.x.
4
Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
J Neural Eng. 2006 Dec;3(4):316-26. doi: 10.1088/1741-2560/3/4/009. Epub 2006 Nov 15.
7
The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes.
Biomaterials. 2013 Sep;34(29):7001-15. doi: 10.1016/j.biomaterials.2013.05.035. Epub 2013 Jun 21.
9
Assessment of gliosis around moveable implants in the brain.
J Neural Eng. 2009 Aug;6(4):046004. doi: 10.1088/1741-2560/6/4/046004. Epub 2009 Jun 25.
10
Ultrasoft microwire neural electrodes improve chronic tissue integration.
Acta Biomater. 2017 Apr 15;53:46-58. doi: 10.1016/j.actbio.2017.02.010. Epub 2017 Feb 6.

引用本文的文献

2
Advanced age is not a barrier to chronic intracortical single-unit recording in rat cortex.
Front Neurosci. 2024 May 15;18:1389556. doi: 10.3389/fnins.2024.1389556. eCollection 2024.
5
Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier.
Front Drug Deliv. 2023;3. doi: 10.3389/fddev.2023.1227816. Epub 2023 Jul 10.
6
Friend or Foe? Defining the Role of Glutamate in Aging and Alzheimer's Disease.
Front Aging. 2022 Jun 16;3:929474. doi: 10.3389/fragi.2022.929474. eCollection 2022.
7
A Historical Review of Brain Drug Delivery.
Pharmaceutics. 2022 Jun 16;14(6):1283. doi: 10.3390/pharmaceutics14061283.
8
Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid.
Pharmaceutics. 2022 May 13;14(5):1051. doi: 10.3390/pharmaceutics14051051.
9
Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators.
Nat Rev Neurosci. 2022 May;23(5):257-274. doi: 10.1038/s41583-022-00577-6. Epub 2022 Mar 31.
10
Intracortical Microelectrode Array Unit Yield under Chronic Conditions: A Comparative Evaluation.
Micromachines (Basel). 2021 Aug 17;12(8):972. doi: 10.3390/mi12080972.

本文引用的文献

1
Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry.
Biomaterials. 2008 Aug;29(23):3289-97. doi: 10.1016/j.biomaterials.2008.03.045. Epub 2008 May 16.
2
Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS.
Biosens Bioelectron. 2008 Apr 15;23(9):1382-9. doi: 10.1016/j.bios.2007.12.013. Epub 2007 Dec 23.
3
Second-by-second measures of L-glutamate in the prefrontal cortex and striatum of freely moving mice.
J Pharmacol Exp Ther. 2008 Feb;324(2):725-31. doi: 10.1124/jpet.107.131698. Epub 2007 Nov 16.
4
Prefrontal acetylcholine release controls cue detection on multiple timescales.
Neuron. 2007 Oct 4;56(1):141-54. doi: 10.1016/j.neuron.2007.08.025.
5
Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
Analyst. 2007 Sep;132(9):876-84. doi: 10.1039/b705552h. Epub 2007 Jul 5.
6
Chronic second-by-second measures of L-glutamate in the central nervous system of freely moving rats.
J Neurochem. 2007 Aug;102(3):712-22. doi: 10.1111/j.1471-4159.2007.04596.x.
8
Second-by-second measurement of acetylcholine release in prefrontal cortex.
Eur J Neurosci. 2006 Nov;24(10):2749-57. doi: 10.1111/j.1460-9568.2006.05176.x.
9
Adderall produces increased striatal dopamine release and a prolonged time course compared to amphetamine isomers.
Psychopharmacology (Berl). 2007 Apr;191(3):669-77. doi: 10.1007/s00213-006-0550-9. Epub 2006 Oct 10.
10
In vivo monitoring of extracellular glutamate in the brain with a microsensor.
Brain Res. 2006 Nov 6;1118(1):34-42. doi: 10.1016/j.brainres.2006.08.015. Epub 2006 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验