Suppr超能文献

超快瞬态吸收光谱学:原理及其在光合系统中的应用

Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.

作者信息

Berera Rudi, van Grondelle Rienk, Kennis John T M

机构信息

Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, Amsterdam, The Netherlands.

出版信息

Photosynth Res. 2009 Aug-Sep;101(2-3):105-18. doi: 10.1007/s11120-009-9454-y. Epub 2009 Jul 4.

Abstract

The photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. The advent of ultrafast laser systems that produce pulses with femtosecond duration opened up a new area of research and enabled investigation of these photophysical and photochemical reactions in real time. Here, we provide a basic description of the ultrafast transient absorption technique, the laser and wavelength-conversion equipment, the transient absorption setup, and the collection of transient absorption data. Recent applications of ultrafast transient absorption spectroscopy on systems with increasing degree of complexity, from biomimetic light-harvesting systems to natural light-harvesting antennas, are presented. In particular, we will discuss, in this educational review, how a molecular understanding of the light-harvesting and photoprotective functions of carotenoids in photosynthesis is accomplished through the application of ultrafast transient absorption spectroscopy.

摘要

光合色素 - 蛋白质复合物吸收光后发生的光物理和光化学反应,是生物学中最快的事件之一,其发生时间尺度从几十飞秒到几纳秒不等。能产生飞秒持续时间脉冲的超快激光系统的出现,开辟了一个新的研究领域,并能够实时研究这些光物理和光化学反应。在此,我们对超快瞬态吸收技术、激光和波长转换设备、瞬态吸收装置以及瞬态吸收数据的采集进行基本描述。还介绍了超快瞬态吸收光谱在从仿生光捕获系统到自然光捕获天线等复杂度不断增加的系统上的最新应用。特别是,在这篇教育综述中,我们将讨论如何通过应用超快瞬态吸收光谱来实现对光合作用中类胡萝卜素的光捕获和光保护功能的分子理解。

相似文献

1
Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems.
Photosynth Res. 2009 Aug-Sep;101(2-3):105-18. doi: 10.1007/s11120-009-9454-y. Epub 2009 Jul 4.
3
Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis.
Biochim Biophys Acta. 2015 Jan;1847(1):69-78. doi: 10.1016/j.bbabio.2014.09.001. Epub 2014 Sep 16.
4
A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6502-6508. doi: 10.1073/pnas.1920923117. Epub 2020 Mar 5.
5
Molecular factors controlling photosynthetic light harvesting by carotenoids.
Acc Chem Res. 2010 Aug 17;43(8):1125-34. doi: 10.1021/ar100030m.
6
Femtosecond visible transient absorption spectroscopy of chlorophyll--containing photosystem II.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):23158-23164. doi: 10.1073/pnas.2006016117. Epub 2020 Aug 31.
7
8
Carotenoids and Photosynthesis.
Subcell Biochem. 2016;79:111-39. doi: 10.1007/978-3-319-39126-7_4.

引用本文的文献

1
Multistep 11- to All- Retinal Photoisomerization in Bestrhodopsin, an Unusual Microbial Rhodopsin.
J Am Chem Soc. 2025 Jul 23;147(29):25571-25583. doi: 10.1021/jacs.5c06216. Epub 2025 Jul 10.
2
Anisotropic strain relaxation-induced directional ultrafast carrier dynamics in RuO films.
Sci Adv. 2025 Jun 27;11(26):eadw7125. doi: 10.1126/sciadv.adw7125.
3
Probing One-Electron Transfer in Selected Trace Elements.
Biol Trace Elem Res. 2025 Jun 26. doi: 10.1007/s12011-025-04709-8.
4
Structure, regulation and assembly of the photosynthetic electron transport chain.
Nat Rev Mol Cell Biol. 2025 May 21. doi: 10.1038/s41580-025-00847-y.
5
Fluorescence-Detected Pump-Probe Spectroscopy for Artifact-Free Detection of Stokes Shift Dynamics.
J Phys Chem Lett. 2025 May 22;16(20):4861-4868. doi: 10.1021/acs.jpclett.5c00646. Epub 2025 May 9.
7
Emerging ultrafast technologies in biotechnology.
3 Biotech. 2025 May;15(5):142. doi: 10.1007/s13205-025-04309-2. Epub 2025 Apr 24.
8
Retinal to Retinal Energy Transfer in a Bistable Microbial Rhodopsin Dimer.
J Am Chem Soc. 2025 Apr 30;147(17):14468-14480. doi: 10.1021/jacs.5c01276. Epub 2025 Apr 17.
9
Powering the Future: Unveiling the Secrets of Semiconductor Biointerfaces in Biohybrids for Semiartificial Photosynthesis.
Artif Photosynth. 2024 Aug 23;1(1):27-49. doi: 10.1021/aps.4c00008. eCollection 2025 Jan 23.
10
Ultrafast Dynamics in Flavocytochrome C by Using Transient Absorption and Femtosecond Fluorescence Lifetime Spectroscopy.
J Phys Chem B. 2025 Apr 17;129(15):3731-3739. doi: 10.1021/acs.jpcb.4c05496. Epub 2025 Apr 8.

本文引用的文献

1
Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis.
Photosynth Res. 1994 Sep;41(3):389-95. doi: 10.1007/BF02183041.
2
A mechanism of energy dissipation in cyanobacteria.
Biophys J. 2009 Mar 18;96(6):2261-7. doi: 10.1016/j.bpj.2008.12.3905.
3
A photoactive carotenoid protein acting as light intensity sensor.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12075-80. doi: 10.1073/pnas.0804636105. Epub 2008 Aug 7.
4
Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.
Science. 2008 May 9;320(5877):794-7. doi: 10.1126/science.1154800.
5
Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.
J Phys Chem B. 2008 Mar 20;112(11):3558-67. doi: 10.1021/jp0763681. Epub 2008 Feb 23.
6
Identification of a mechanism of photoprotective energy dissipation in higher plants.
Nature. 2007 Nov 22;450(7169):575-8. doi: 10.1038/nature06262.
7
Ultrafast spectroscopy of biological photoreceptors.
Curr Opin Struct Biol. 2007 Oct;17(5):623-30. doi: 10.1016/j.sbi.2007.09.006. Epub 2007 Oct 23.
8
Femtobiology.
Annu Rev Phys Chem. 2008;59:53-77. doi: 10.1146/annurev.physchem.59.032607.093615.
10
Time-resolved methods in biophysics. 5. Femtosecond time-resolved and dispersed infrared spectroscopy on proteins.
Photochem Photobiol Sci. 2007 May;6(5):501-7. doi: 10.1039/b613023b. Epub 2007 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验