Burns Cathal, Gibson Elizabeth A, Fuller Linsey, Kalathil Shafeer
Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Department of Applied Sciences, Northumbria University, Newcastle NE1 8ST, United Kingdom.
Energy Materials Laboratory, Chemistry, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
Artif Photosynth. 2024 Aug 23;1(1):27-49. doi: 10.1021/aps.4c00008. eCollection 2025 Jan 23.
Developing technology for sustainable chemical and fuel production is a key focus of scientific research. Semiartificial photosynthesis is a promising approach, pairing "electric microbes" with artificial light absorbers (semiconductors) to convert N, CO, and water into value-added products using sunlight. Mimicking natural photosynthesis is done with semiconductors acting as electron donors or sinks for microbes. This method enables the production of multicarbon (C+) chemicals (e.g., ethanol and caproic acid) and ammonia with high efficiency and selectivity. Despite significant progress, commercial-scale applications remain elusive due to fundamental challenges. This Review covers advances in semiartificial photosynthesis and highlights that there is no clear mechanistic understanding underpinning the production of chemicals using the combination of light, semiconductors, and microbes. Does the mechanism rely on H uptake, do the microbes eat electrons directly from the light absorbers, or is it a combination of both? It focuses on overcoming bottlenecks using advanced spectroscopy, microscopy, and synthetic biology tools to study charge transfer kinetics between microbial cell membranes and semiconductors. Understanding this interaction is crucial for increasing solar-to-chemical (STC) efficiencies, necessary for industrial use. This Review also outlines future research directions and techniques to advance this field, aiming to achieve net-zero climate goals through multidisciplinary efforts.
开发可持续化学和燃料生产技术是科学研究的一个关键重点。半人工光合作用是一种很有前景的方法,它将“电微生物”与人工光吸收剂(半导体)配对,利用阳光将氮、一氧化碳和水转化为增值产品。利用半导体作为微生物的电子供体或受体来模拟自然光合作用。这种方法能够高效且有选择性地生产多碳(C+)化学品(如乙醇和己酸)以及氨。尽管取得了重大进展,但由于一些基本挑战,商业规模的应用仍然难以实现。本综述涵盖了半人工光合作用的进展,并强调目前对于利用光、半导体和微生物组合生产化学品的过程,尚无清晰的机理认识。其机制是依赖于氢的摄取,微生物是直接从光吸收剂获取电子,还是两者兼而有之?综述重点介绍了如何利用先进的光谱学、显微镜学和合成生物学工具来克服瓶颈,以研究微生物细胞膜与半导体之间的电荷转移动力学。理解这种相互作用对于提高太阳能到化学能(STC)的效率至关重要,而这是工业应用所必需的。本综述还概述了推动该领域发展的未来研究方向和技术,旨在通过多学科努力实现净零气候目标。