Suppr超能文献

转录激活因子FhlA的蛋白质工程改造以增强大肠杆菌中的氢气产生

Protein engineering of the transcriptional activator FhlA To enhance hydrogen production in Escherichia coli.

作者信息

Sanchez-Torres Viviana, Maeda Toshinari, Wood Thomas K

机构信息

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA.

出版信息

Appl Environ Microbiol. 2009 Sep;75(17):5639-46. doi: 10.1128/AEM.00638-09. Epub 2009 Jul 6.

Abstract

Escherichia coli produces H(2) from formate via the formate hydrogenlyase (FHL) complex during mixed acid fermentation; the FHL complex consists of formate dehydrogenase H (encoded by fdhF) for forming 2H(+), 2e(-), and CO(2) from formate and hydrogenase 3 (encoded by hycGE) for synthesizing H(2) from 2H(+) and 2e(-). FHL protein production is activated by the sigma(54) transcriptional activator FhlA, which activates transcription of fdhF and the hyc, hyp, and hydN-hypF operons. Here, through random mutagenesis using error-prone PCR over the whole gene, as well as over the fhlA region encoding the first 388 amino acids of the 692-amino-acid protein, we evolved FhlA to increase H(2) production. The amino acid replacements in FhlA133 (Q11H, L14V, Y177F, K245R, M288K, and I342F) increased hydrogen production ninefold, and the replacements in FhlA1157 (M6T, S35T, L113P, S146C, and E363K) increased hydrogen production fourfold. Saturation mutagenesis at the codons corresponding to the amino acid replacements in FhlA133 and at position E363 identified the importance of position L14 and of E363 for the increased activity; FhlA with replacements L14G and E363G increased hydrogen production (fourfold and sixfold, respectively) compared to FhlA. Whole-transcriptome and promoter reporter constructs revealed that the mechanism by which the FhlA133 changes increase hydrogen production is by increasing transcription of all of the genes activated by FhlA (the FHL complex). With FhlA133, transcription of P(fdhF) and P(hyc) is less sensitive to formate regulation, and with FhlA363 (E363G), P(hyc) transcription increases but P(hyp) transcription decreases and hydrogen production is less affected by the repressor HycA.

摘要

在混合酸发酵过程中,大肠杆菌通过甲酸氢裂解酶(FHL)复合体从甲酸产生H₂;FHL复合体由用于将甲酸转化为2H⁺、2e⁻和CO₂的甲酸脱氢酶H(由fdhF编码)以及用于从2H⁺和2e⁻合成H₂的氢化酶3(由hycGE编码)组成。FHL蛋白的产生由σ⁵⁴转录激活因子FhlA激活,FhlA激活fdhF以及hyc、hyp和hydN - hypF操纵子的转录。在此,通过使用易错PCR对整个基因以及对编码692个氨基酸蛋白质前388个氨基酸的fhlA区域进行随机诱变,我们对FhlA进行进化以增加H₂的产生。FhlA133中的氨基酸替换(Q11H、L14V、Y177F、K245R、M288K和I342F)使产氢量增加了九倍,FhlA1157中的替换(M6T、S35T、L113P、S146C和E363K)使产氢量增加了四倍。在与FhlA133中氨基酸替换相对应的密码子以及E363位置进行饱和诱变,确定了L14位置和E363对于活性增加的重要性;与FhlA相比,具有L14G和E363G替换的FhlA产氢量分别增加了四倍和六倍。全转录组和启动子报告构建体表明,FhlA133变化增加产氢量的机制是通过增加FhlA激活的所有基因(FHL复合体)的转录。对于FhlA133,P(fdhF)和P(hyc)的转录对甲酸调节不太敏感,对于FhlA363(E363G),P(hyc)转录增加但P(hyp)转录减少,并且产氢量受阻遏物HycA的影响较小。

相似文献

1
Protein engineering of the transcriptional activator FhlA To enhance hydrogen production in Escherichia coli.
Appl Environ Microbiol. 2009 Sep;75(17):5639-46. doi: 10.1128/AEM.00638-09. Epub 2009 Jul 6.

引用本文的文献

1
FhlA is a Formate Binding Protein.
bioRxiv. 2024 Jul 24:2024.07.24.604796. doi: 10.1101/2024.07.24.604796.
2
Impaired glucose metabolism by deleting the operon of hydrogenase 2 in Escherichia coli.
Arch Microbiol. 2022 Sep 17;204(10):627. doi: 10.1007/s00203-022-03245-6.
5
Activation of a [NiFe]-hydrogenase-4 isoenzyme by maturation proteases.
Microbiology (Reading). 2020 Sep;166(9):854-860. doi: 10.1099/mic.0.000963.
6
Enhanced biohydrogen production from cotton stalk hydrolysate of WL1318 by overexpression of the formate hydrogen lyase activator gene.
Biotechnol Biofuels. 2020 May 22;13:94. doi: 10.1186/s13068-020-01733-9. eCollection 2020.
7
Pseudogene product YqiG is important for expression and biohydrogen production in BW25113.
3 Biotech. 2018 Oct;8(10):435. doi: 10.1007/s13205-018-1461-2. Epub 2018 Oct 3.
10
Anaerobic Formate and Hydrogen Metabolism.
EcoSal Plus. 2016 Oct;7(1). doi: 10.1128/ecosalplus.ESP-0011-2016.

本文引用的文献

1
Metabolically engineered bacteria for producing hydrogen via fermentation.
Microb Biotechnol. 2008 Mar;1(2):107-25. doi: 10.1111/j.1751-7915.2007.00009.x.
2
Metabolic engineering to enhance bacterial hydrogen production.
Microb Biotechnol. 2008 Jan;1(1):30-9. doi: 10.1111/j.1751-7915.2007.00003.x.
3
Effect of chemically-induced, cloned-gene expression on protein synthesis in E. Coli.
Biotechnol Bioeng. 1991 Aug 5;38(4):397-412. doi: 10.1002/bit.260380410.
4
Protein engineering of hydrogenase 3 to enhance hydrogen production.
Appl Microbiol Biotechnol. 2008 May;79(1):77-86. doi: 10.1007/s00253-008-1416-3. Epub 2008 Mar 12.
5
Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli.
Appl Microbiol Biotechnol. 2007 Dec;77(4):879-90. doi: 10.1007/s00253-007-1217-0. Epub 2007 Oct 16.
6
Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities.
Appl Microbiol Biotechnol. 2007 Oct;76(5):1035-42. doi: 10.1007/s00253-007-1086-6. Epub 2007 Aug 1.
9
High-yield hydrogen production from starch and water by a synthetic enzymatic pathway.
PLoS One. 2007 May 23;2(5):e456. doi: 10.1371/journal.pone.0000456.
10
Biochemistry. Directing biosynthesis.
Science. 2006 Oct 27;314(5799):603-5. doi: 10.1126/science.1132692.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验