Suppr超能文献

从3B-3C切割位点突变体研究中获得的对脊髓灰质炎病毒基因组复制和衣壳化的见解。

Insight into poliovirus genome replication and encapsidation obtained from studies of 3B-3C cleavage site mutants.

作者信息

Oh Hyung Suk, Pathak Harsh B, Goodfellow Ian G, Arnold Jamie J, Cameron Craig E

机构信息

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, USA.

出版信息

J Virol. 2009 Sep;83(18):9370-87. doi: 10.1128/JVI.02076-08. Epub 2009 Jul 8.

Abstract

A poliovirus (PV) mutant (termed GG), which is incapable of producing 3AB, VPg, and 3CD proteins due to a defective cleavage site between the 3B and 3C proteins, replicated, producing 3BC-linked RNA rather than the VPg-linked RNA produced by the wild type (WT). GG PV RNA is quasi-infectious. The yield of infectious GG PV relative to replicated RNA is reduced by almost 5 logs relative to that of WT PV. Proteolytic activity required for polyprotein processing is normal for the GG mutant. 3BC-linked RNA can be encapsidated as efficiently as VPg-linked RNA. However, a step after genome replication but preceding virus assembly that is dependent on 3CD and/or 3AB proteins limits production of infectious GG PV. This step may involve release of replicated genomes from replication complexes. A pseudorevertant (termed EG) partially restored cleavage at the 3B-3C cleavage site. The reduced rate of formation of 3AB and 3CD caused corresponding reductions in the observed rate of genome replication and infectious virus production by EG PV without impacting the final yield of replicated RNA or infectious virus relative to that of WT PV. Using EG PV, we showed that genome replication and encapsidation were distinct steps in the multiplication cycle. Ectopic expression of 3CD protein reversed the genome replication phenotype without alleviating the infectious-virus production phenotype. This is the first report of a trans-complementable function for 3CD for any picornavirus. This observation supports an interaction between 3CD protein and viral and/or host factors that is critical for genome replication, perhaps formation of replication complexes.

摘要

一种脊髓灰质炎病毒(PV)突变体(称为GG),由于3B和3C蛋白之间的切割位点缺陷,无法产生3AB、VPg和3CD蛋白,它能够复制,产生与3BC相连的RNA,而不是野生型(WT)产生的与VPg相连的RNA。GG PV RNA具有准感染性。相对于WT PV,感染性GG PV相对于复制RNA的产量降低了近5个对数。多蛋白加工所需的蛋白水解活性对于GG突变体来说是正常的。与VPg相连的RNA一样,与3BC相连的RNA也能有效地被衣壳化。然而,在基因组复制之后但在病毒组装之前的一个依赖于3CD和/或3AB蛋白的步骤限制了感染性GG PV的产生。这个步骤可能涉及从复制复合物中释放复制的基因组。一个假回复突变体(称为EG)部分恢复了3B - 3C切割位点的切割。3AB和3CD形成速率的降低导致EG PV观察到的基因组复制速率和感染性病毒产生相应降低,而相对于WT PV,不影响复制RNA或感染性病毒的最终产量。使用EG PV,我们表明基因组复制和衣壳化是增殖周期中的不同步骤。3CD蛋白的异位表达逆转了基因组复制表型,而没有减轻感染性病毒产生表型。这是关于任何小RNA病毒3CD的反式互补功能的首次报道。这一观察结果支持了3CD蛋白与病毒和/或宿主因子之间的相互作用,这种相互作用对于基因组复制至关重要,可能是复制复合物的形成。

相似文献

1
Insight into poliovirus genome replication and encapsidation obtained from studies of 3B-3C cleavage site mutants.
J Virol. 2009 Sep;83(18):9370-87. doi: 10.1128/JVI.02076-08. Epub 2009 Jul 8.
2
An efficient complementation system for replication of defective poliovirus mutants.
J Virol. 2024 Jul 23;98(7):e0052324. doi: 10.1128/jvi.00523-24. Epub 2024 Jun 5.
5
Multiple poliovirus-induced organelles suggested by comparison of spatiotemporal dynamics of membranous structures and phosphoinositides.
PLoS Pathog. 2018 Apr 27;14(4):e1007036. doi: 10.1371/journal.ppat.1007036. eCollection 2018 Apr.

引用本文的文献

2
Non-lytic spread of poliovirus requires the nonstructural protein 3CD.
mBio. 2025 Jan 8;16(1):e0327624. doi: 10.1128/mbio.03276-24. Epub 2024 Dec 12.
3
Non-lytic spread of poliovirus requires the nonstructural protein 3CD.
bioRxiv. 2024 Oct 19:2024.10.18.619132. doi: 10.1101/2024.10.18.619132.
4
An efficient complementation system for replication of defective poliovirus mutants.
J Virol. 2024 Jul 23;98(7):e0052324. doi: 10.1128/jvi.00523-24. Epub 2024 Jun 5.
5
Insights into Polyprotein Processing and RNA-Protein Interactions in Foot-and-Mouth Disease Virus Genome Replication.
J Virol. 2023 May 31;97(5):e0017123. doi: 10.1128/jvi.00171-23. Epub 2023 May 8.
6
A Proximity biotinylation assay with a host protein bait reveals multiple factors modulating enterovirus replication.
PLoS Pathog. 2022 Oct 28;18(10):e1010906. doi: 10.1371/journal.ppat.1010906. eCollection 2022 Oct.
7
Viral protein engagement of GBF1 induces host cell vulnerability through synthetic lethality.
J Cell Biol. 2022 Nov 7;221(11). doi: 10.1083/jcb.202011050. Epub 2022 Oct 28.
8
Protein Nucleotidylylation in +ssRNA Viruses.
Viruses. 2021 Aug 5;13(8):1549. doi: 10.3390/v13081549.
9
Functional advantages of triplication of the 3B coding region of the FMDV genome.
FASEB J. 2021 Feb;35(2):e21215. doi: 10.1096/fj.202001473RR. Epub 2020 Nov 23.
10
Translation and Replication Dynamics of Single RNA Viruses.
Cell. 2020 Dec 23;183(7):1930-1945.e23. doi: 10.1016/j.cell.2020.10.019. Epub 2020 Nov 13.

本文引用的文献

1
Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation.
J Biol Chem. 2008 Nov 7;283(45):30677-88. doi: 10.1074/jbc.M806101200. Epub 2008 Sep 8.
2
Targeting the open-flap conformation of HIV-1 protease with pyrrolidine-based inhibitors.
ChemMedChem. 2008 Sep;3(9):1337-44. doi: 10.1002/cmdc.200800113.
3
Independent replication of cowpea mosaic virus bottom component RNA: in vivo instability of the viral RNAs.
Virology. 1985 Jul 30;144(2):495-501. doi: 10.1016/0042-6822(85)90289-2.
4
New developments in the discovery of agents to treat hepatitis C.
Curr Top Med Chem. 2008;8(7):533-62. doi: 10.2174/156802608783955647.
9
10
Effect of cordycepin triphosphate on in vitro RNA synthesis by plant viral replicases.
J Virol. 1979 Feb;29(2):811-4. doi: 10.1128/JVI.29.2.811-814.1979.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验